1
|
Stas EB, Warner AJ, Post ZB, Hastad CW, Faccin JEG, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Gebhardt JT. Effects of low acid-binding capacity specialty soy protein sources on nursery pig performance in a commercial environment. Transl Anim Sci 2024; 9:txae180. [PMID: 39844791 PMCID: PMC11751633 DOI: 10.1093/tas/txae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Two experiments were conducted to determine the effects of low acid-binding capacity (ABC) specialty soy protein sources on weanling pig performance. In experiment 1, 2,260 pigs, initially weighed 6.7 kg, were used to determine the effects of low ABC soy proteins as a replacement to poultry meal (PM) or spray-dried blood plasma (SDBP). Treatments were arranged in a 2 × 2 factorial plus a control diet fed in two phases. There were 20 or 21 pigs per pen with 22 replications (pens) per treatment. The control diet contained PM (AV-E Digest, XFE Products, Des Moines, IA) and SDBP (Appetein, APC Inc., Ankeny, IA). Specialty soy protein concentrate (SSPC; AX3 Digest, Protekta, Newport Beach, CA) and microbial-enhanced soybean meal (MESBM; MEPRO; Prairie Aquatech, Brookings, SD) were used to replace PM or PM and SDBP on a standardized ileal digestible Lys basis. From d 0 to 21 and d 0 to 42, pigs fed either soy protein source replacing PM had greater (P ≤ 0.016) average daily gain (ADG) and average daily feed intake than pigs fed PM. From d 0 to 21, pigs fed SSPC had increased (P < 0.001) G:F compared with pigs fed MESBM and those fed either soy protein source replacing SDBP had increased (P = 0.044) G:F compared with pigs fed SDBP. In experiment 2, 1,057 pigs, initially weighed 6.2 kg, were used to determine the effects of diet ABC at a pH of 4 (ABC-4) with specialty soy proteins with or without pharmacological levels of Zn from ZnO. Experimental diets were fed in two phases with 22 pigs per pen and 12 replications per treatment. Dietary treatments were arranged in a 2 × 2 factorial with main effects of ABC-4 (low or high) and pharmacological levels of Zn from ZnO (105 or 2,000 mg/kg). The low ABC-4 diet without ZnO was formulated to 150 and 200 meq/kg using SSPC in phases 1 and 2, respectively. The high ABC-4 diet used enzymatically treated soybean meal (HP 300, Hamlet Protein, Findlay, OH) which increased the ABC-4 by 127 and 104 meq/kg in phases 1 and 2, respectively. From d 0 to 21 and d 0 to 42, there was an ABC-4 × ZnO interaction (P ≤ 0.026) observed where pigs fed low ABC-4 diets had greater (P < 0.05) ADG and G:F than pigs fed high ABC-4 diets without ZnO, but when diets contained added ZnO, there were no differences based on ABC-4. In conclusion, low ABC specialty soy proteins can be used to achieve low dietary ABC-4 levels to improve the performance of weanling pigs and provide a similar response to those fed pharmacological levels of Zn.
Collapse
Affiliation(s)
- Ethan B Stas
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | - Zach B Post
- New Fashion Pork, Jackson, MN 56143-1601, USA
| | | | - Jamil E G Faccin
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
2
|
Choi H, Kim SW. Dietary Intervention of Benzoic Acid for Intestinal Health and Growth of Nursery Pigs. Animals (Basel) 2024; 14:2394. [PMID: 39199928 PMCID: PMC11350768 DOI: 10.3390/ani14162394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
The objectives of this review are to investigate how benzoic acid can mitigate the negative effects of weaning stress, improve the intestinal microbiota, intestinal health, and growth of nursery pigs, determine the optimal dose level of benzoic acid for the growth rate in nursery pigs, and compare the efficacy of benzoic acid and other acids in pig feeds. After weaning, pigs are exposed to less lactose and solid feed with high acid-binding capacity at infrequent intervals, causing an increase in digesta pH, reducing protein digestion, and increasing ammonia-producing bacteria in the stomach. Benzoic acid supplementation has improved the intestinal health and growth of nursery pigs through its antimicrobial properties and pH reduction in the digesta. The positive modulation of luminal microbiota in the small intestine of pigs by benzoic acid improves intestinal morphology and enhances nutrient utilization, especially nitrogen, of nursery pigs. Benzoic acid supplementation of up to 1% in feeds also increases hippuric acid contents in the urine of nursery pigs, decreasing urinary pH, which is related to ammonia emission and barn conditions in intensive pig production. Supported by the beneficial impacts of benzoic acid, the growth performance of nursery pigs was also improved. However, excessive benzoic acid (over 2.5% up to 5%) in feeds reduces the growth performance of nursery pigs. Thus, this review conducted a meta-analysis of the results from 16 papers to determine the optimal dose level of benzoic acid for body weight gain of nursery pigs, which was found to be 0.60%. The efficacy of benzoic acid was similar to that of other organic acids, including citric acid, fumaric acid, formic acid, and formate salts. Collectively, benzoic acid supplementation can positively modulate the luminal and mucosal microbiota in the small intestine, increase nutrient utilization and intestinal health, decrease urinary pH, and improve the growth performance of nursery pigs.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
3
|
Tang Q, Lan T, Zhou C, Gao J, Wu L, Wei H, Li W, Tang Z, Tang W, Diao H, Xu Y, Peng X, Pang J, Zhao X, Sun Z. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:297-311. [PMID: 38800731 PMCID: PMC11127239 DOI: 10.1016/j.aninu.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tianyi Lan
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jingchun Gao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiyang Wei
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644005, China
| |
Collapse
|
4
|
Selle PH, Macelline SP, Chrystal PV, Liu SY. The Contribution of Phytate-Degrading Enzymes to Chicken-Meat Production. Animals (Basel) 2023; 13:ani13040603. [PMID: 36830391 PMCID: PMC9951704 DOI: 10.3390/ani13040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The contribution that exogenous phytases have made towards sustainable chicken-meat production over the past two decades has been unequivocally immense. Initially, their acceptance by the global industry was negligible, but today, exogenous phytases are routine additions to broiler diets, very often at elevated inclusion levels. The genesis of this remarkable development is based on the capacity of phytases to enhance phosphorus (P) utilization, thereby reducing P excretion. This was amplified by an expanding appreciation of the powerful anti-nutritive properties of the substrate, phytate (myo-inositol hexaphosphate; IP6), which is invariably present in all plant-sourced feedstuffs and practical broiler diets. The surprisingly broad spectra of anti-nutritive properties harbored by dietary phytate are counteracted by exogenous phytases via the hydrolysis of phytate and the positive consequences of phytate degradation. Phytases enhance the utilization of minerals, including phosphorus, sodium, and calcium, the protein digestion, and the intestinal uptakes of amino acids and glucose to varying extents. The liberation of phytate-bound phosphorus (P) by phytase is fundamental; however, the impacts of phytase on protein digestion, the intestinal uptakes of amino acids, and the apparent amino acid digestibility coefficients are intriguing and important. Numerous factors are involved, but it appears that phytases have positive impacts on the initiation of protein digestion by pepsin. This extends to promoting the intestinal uptakes of amino acids stemming from the enhanced uptakes of monomeric amino acids via Na+-dependent transporters and, arguably more importantly, from the enhanced uptakes of oligopeptides via PepT-1, which is functionally dependent on the Na+/H+ exchanger, NHE. Our comprehension of the phytate-phytase axis in poultry nutrition has expanded over the past 30 years; this has promoted the extraordinary surge in acceptance of exogenous phytases, coupled with the development of more efficacious preparations in combination with the deflating inclusion costs for exogenous phytases. The purpose of this paper is to review the progress that has been made with phytate-degrading enzymes since their introduction in 1991 and the underlying mechanisms driving their positive contribution to chicken-meat production now and into the future.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
- Correspondence:
| | - Shemil P. Macelline
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Peter V. Chrystal
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- Complete Feed Solutions, Pakuranga, Auckland 2140, New Zealand
| | - Sonia Yun Liu
- Poultry Research Foundation within The University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Lee SA, Lagos LV, Merriman LA, Stein HH. Digestibility of calcium in calcium-containing ingredients and requirements for digestible calcium by growing pigs. J Anim Sci 2023; 101:skad328. [PMID: 37758207 PMCID: PMC10629445 DOI: 10.1093/jas/skad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
The concentration of Ca in plant feed ingredients is low compared with the requirement for pigs and most Ca in diets for pigs is provided by limestone and Ca phosphate. To determine digestibility values for Ca that are additive in mixed diets, the standardized total tract digestibility (STTD) of Ca needs to be calculated, and the STTD of Ca by growing pigs in most Ca-containing ingredients has been reported. Although Ca is an inexpensive nutrient compared with P and amino acids, excess Ca needs to be avoided because excess dietary Ca results in reduced P digestibility, reduced feed intake, and reduced growth performance of pigs. Recent data indicate that most diets produced for pigs in the United States and Europe contain ~0.20 percentage units more Ca than formulated, which likely is because of the use of limestone as a carrier in feed additives or as a flow agent in other ingredients. An excess of this magnitude without a corresponding excess of P will result in a reduction in daily gain of growing pigs by 50 to 100 g. Greater emphasis, therefore, needs to be placed on determining the concentration of Ca in diets for pigs. Microbial phytase increases the digestibility of both Ca and P and it is, therefore, important that the release of both Ca and P by phytase is considered in diet formulation. However, due to the relationship between Ca and P in postabsorptive metabolism, diets need to be formulated based on a ratio between digestible Ca and digestible P. To maximize average daily gain, this ratio needs to be less than 1.40:1.0 in diets for weanling pigs, and the ratio needs to be reduced as the body weight of pigs increases. In contrast, to maximize bone ash, the digestible Ca to digestible P ratio needs to increase from 1.67:1.0 in 11 to 25 kg pigs to 2.33:1.0 in finishing pigs. Gestating sows have reduced STTD and retention of Ca and P compared with growing pigs and formulation of diets for sows based on digestibility values obtained in growing pigs will result in inaccuracies in the provision of Ca and P. There is, however, a lack of data for the digestibility of Ca and P by gestating and lactating sows, and responses to microbial phytase by sows are not fully understood. There is, therefore, a need for research to generate more data in this area. In the present review, a summary of data for the digestibility of Ca in feed ingredients for pigs and estimates for the requirement for digestible Ca by growing and finishing pigs are provided.
Collapse
Affiliation(s)
- Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - L Vanessa Lagos
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Laura A Merriman
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|