1
|
Kueck NA, Hüwel S, Hoffmann A, Rentmeister A. Quantification of Propargylated RNA Nucleosides After Metabolic Labeling Via the Methylation Pathway. Chembiochem 2025; 26:e202400986. [PMID: 39993262 DOI: 10.1002/cbic.202400986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA modifications are involved in numerous biological processes and vary in different cell types. Methylation is the most widespread type of RNA modification and occurs via S-adenosyl-L-methionine (SAM). We recently developed a metabolic labeling approach based on intracellular formation of a clickable SAM analog (SeAdoYn) and demonstrated its use in mapping methyltransferase (MTase) target sites in mRNA from HeLa cells. Here we investigate how metabolic labeling via the clickable SAM analog modifies four different nucleosides in RNA of HEK293T in comparison to HeLa cells. We find that HEK293T cells retain higher cell viability upon feeding the clickable metabolic SAM precursor. In poly(A)+ RNA we find high Aprop/A levels (0.04 %) and in total RNA (but not poly(A)+ RNA) we detect prop3C, which had not been detected previously in HeLa cells. We discuss the findings in the context of data from the literature with respect to mRNA half-lives in cancer and non-cancer cell lines and suggest that CMTr2 is most likely responsible for the high Aprop level in poly(A)+ RNA.
Collapse
Affiliation(s)
- Nadine A Kueck
- University of Münster, Institute of Biochemistry, Corrensstr. 36, D-48149, Muenster, Germany
| | - Sabine Hüwel
- University of Münster, Institute of Biochemistry, Corrensstr. 36, D-48149, Muenster, Germany
| | - Arne Hoffmann
- Ludwig-Maximilians-University Munich, Department of Chemistry, Butenandtstr. 5-13, Haus F, D-81377, Munich, Germany
| | - Andrea Rentmeister
- Ludwig-Maximilians-University Munich, Department of Chemistry, Butenandtstr. 5-13, Haus F, D-81377, Munich, Germany
| |
Collapse
|
2
|
Htoo JK, Mack S. Letter to the editor on "Systematic review and meta-analysis of the methionine utilization efficiency in piglets receiving different methionine sources". Animal 2024; 18:101122. [PMID: 38531190 DOI: 10.1016/j.animal.2024.101122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024] Open
|
3
|
Souza VC, Remus A, Batonon-Alavo DI, Rouffineau F, Mercier Y, Pomar C, Kebreab E. Response to the letter to the Editor: Systematic review and meta-analysis of the methionine utilization efficiency in piglets receiving different methionine sources. Animal 2024; 18:101123. [PMID: 38520771 DOI: 10.1016/j.animal.2024.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Affiliation(s)
- V C Souza
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - A Remus
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Québec J1M 0C8, Canada
| | | | | | - Y Mercier
- Adisseo France SAS, Malicorne F-03630, France
| | - C Pomar
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Québec J1M 0C8, Canada
| | - E Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Determination of Free Amino Acids in Milk, Colostrum and Plasma of Swine via Liquid Chromatography with Fluorescence and UV Detection. Molecules 2022; 27:molecules27134153. [PMID: 35807399 PMCID: PMC9268350 DOI: 10.3390/molecules27134153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acids are ubiquitous components of mammalian milk and greatly contribute to its nutritional value. The compositional analysis of free amino acids is poorly reported in the literature even though their determination in the biological fluids of livestock animals is necessary to establish possible nutritional interventions. In the present study, the free amino acid profiles in mature swine milk, colostrum and plasma were assessed using a targeted metabolomics approach. In particular, 20 amino acids were identified and quantified via two alternative and complementary reversed-phase HPLC methods, involving two stationary phases based on core-shell technology, i.e., Kinetex C18 and Kinetex F5, and two detection systems, i.e., a diode array detector (DAD) and a fluorescence detector (FLD). The sample preparation involved a de-proteinization step, followed by pre-chromatographic derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). The two optimized methods were validated for specificity, linearity, sensitivity, matrix effect, accuracy and precision and the analytical performances were compared. The analytical methods proved to be suitable for free amino acid profiling in different matrices with high sensitivity and specificity. The correlations among amino acid levels in different biological fluids can be useful for the evaluation of physio-pathological status and to monitor the effects of therapeutic or nutritional interventions in humans and animals.
Collapse
|
5
|
Espinosa CD, Mathai JK, Blavi L, Liu Y, Htoo JK, Caroline Gonzalez-Vega J, Stein HH. Effects of supplemental d-methionine in comparison to l-methionine on nitrogen retention, gut morphology, antioxidant status, and mRNA abundance of amino acid transporters in weanling pigs. J Anim Sci 2021; 99:6357663. [PMID: 34432053 DOI: 10.1093/jas/skab248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
An N-balance experiment was conducted to test the hypothesis that d-Methionine (d-Met) has the same bioavailability and efficacy as l-Methionine (l-Met) when fed to weanling pigs. A Met-deficient basal diet containing 0.24% standardized ileal digestible (SID) Met was formulated. Six additional diets were formulated by adding 0.036%, 0.072%, or 0.108% d-Met or l-Met to the basal diet, and these diets, therefore, contained 77%, 87%, or 97% of the requirement for SID Met. Fifty-six barrows (10.53 ± 1.17 kg) were housed in metabolism crates and allotted to the seven diets with eight replicate pigs per diet. Feces and urine were collected quantitatively with 7-d adaptation and 5-d collection periods. Blood and tissue samples from pigs fed the basal diet and pigs fed diets containing 0.108% supplemental Met were collected on the last day. Results indicated that N retention (%) linearly increased (P < 0.01) as supplemental d-Met or l-Met increased in diets. Based on N retention (%) as a response, the linear slope-ratio regression estimated the bioavailability of d-Met relative to l-Met to be 101% (95% confidence interval: 57%-146%). The villus height and crypt depth in the jejunum were not affected by the Met level or Met source. Total antioxidant capacity or thiobarbituric acid reactive substance concentrations in plasma or tissue samples from pigs fed the control diet or diets containing 0.108% supplemental d-Met or l-Met were not different. Abundance of mRNA for some AA transporters analyzed in intestinal mucosa of pigs also did not differ. Therefore, it is concluded that d-Met and l-Met are equally bioavailable for weanling pigs.
Collapse
Affiliation(s)
| | - John K Mathai
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,USA
| | - Laia Blavi
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,USA
| | - Yanhong Liu
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,USA
| | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang,Germany
| | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,USA
| |
Collapse
|
6
|
Zhou H, Yuan Z, Chen D, Wang H, Shu Y, Gao J, Htoo JK, Yu B. Bioavailability of the dl-methionine and the calcium salt of dl-methionine hydroxy analog compared with l-methionine for nitrogen retention in starter pigs. J Anim Sci 2021; 99:6270939. [PMID: 33956968 DOI: 10.1093/jas/skab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023] Open
Abstract
Two nitrogen balance studies were conducted to evaluate the relative bioavailability values (RBV) of dl-methionine (dl-Met) and dl-methionine hydroxy analog calcium salt (MHA-Ca) to l-methionine (l-Met) as Met sources fed to pigs. In experiment 1, 42 pigs were assigned to 7 treatments feeding with basal diet (BD) formulated to be deficient in Met (0.22% standardized ileal digestible basis) but adequate in other amino acids. Diets included (1) BD, (2) BD + 0.025% dl-Met, (3) BD + 0.050% dl-Met, (4) BD + 0.075% dl-Met, (5) BD + 0.025% l-Met, (6) BD + 0.050% l-Met, and (7) BD + 0.075% l-Met. Increasing levels of l-Met and dl-Met enhanced N retained (g/d) and N retention (% of intake) linearly (P < 0.01). Using a linear slope ratio procedure, a product-to-product RBV of dl-Met compared with l-Met was 94% (95% confidence limits: 65% to 123%) based on N retained expressed as g/d and 99% (95% confidence limits: 70% to 128%) for N retention expressed as % of intake. In experiment 2, 42 pigs were allotted to 7 treatments in another N-balance trial. Diets included (1) BD, (2) BD + 0.025% l-Met, (3) BD + 0.050% l-Met, (4) BD + 0.075% l-Met, (5) BD + 0.030% MHA-Ca, (6) BD + 0.060% MHA-Ca, and (7) BD + 0.089% MHA-Ca. An increase in dietary inclusion rates of l-Met increased (P < 0.01) N retained (g/d) linearly while increasing levels of MHA-Ca had no effects (P > 0.05) on N retained (g/d) and N retention (% of intake). Using linear slope-ratio regression, the RBV of MHA-Ca compared with l-Met was 70% (95% confidence limits: 59% to 81%) on a product-to-product basis or 83% on equimolar basis based on N retained expressed as g/d. Overall, the mean RBV of dl-Met to l-Met of 97% (95% confidence limits cover 100%) indicated that dl-Met and l-Met are equally bioavailable as Met sources in pigs. Compared with l-Met, the RBV of MHA-Ca was lower at 70% (95% confidence limits: 59% to 81%) on a product-to-product basis or 83% on equimolar basis in starter pigs.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengcai Yuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifeng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Shu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Gao
- Nutrition & Care, Evonik (China) Co., Ltd. Beijing 100026, China
| | - John Khun Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Sahebi-Ala F, Hassanabadi A, Golian A. Effect of replacement different methionine levels and sources with betaine on blood metabolites, breast muscle morphology and immune response in heat-stressed broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1868358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatemeh Sahebi-Ala
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Hassanabadi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abolghasem Golian
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Yang Z, Htoo JK, Liao SF. Methionine nutrition in swine and related monogastric animals: Beyond protein biosynthesis. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Estévez M, Geraert PA, Liu R, Delgado J, Mercier Y, Zhang W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks – Invited review. Meat Sci 2020; 163:108087. [DOI: 10.1016/j.meatsci.2020.108087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
|
10
|
Rasch I, Görs S, Tuchscherer A, Viergutz T, Metges CC, Kuhla B. Substitution of Dietary Sulfur Amino Acids by dl-2-Hydroxy-4-Methylthiobutyric Acid Reduces Fractional Glutathione Synthesis in Weaned Piglets. J Nutr 2020; 150:722-729. [PMID: 31773161 PMCID: PMC7138682 DOI: 10.1093/jn/nxz272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Cys is limiting for reduced glutathione (GSH) synthesis and can be synthesized from Met. We hypothesized that the dietary Met hydroxyl analogue dl-2-hydroxy-4-methylthiobutyric acid (dl-HMTBA) affects Cys and GSH metabolism and oxidative stress defense differently than Met. OBJECTIVE The objective was to elucidate whether dl-HMTBA supplementation of a Met-deficient diet affects Cys flux, GSH fractional synthetic rate (FSR), and the basal oxidative stress level relative to Met supplementation in pigs. METHODS Twenty-nine male German Landrace piglets aged 28 d were allocated to 3 dietary groups: a basal diet limiting in Met (69% of Met plus Cys requirement) supplemented with either 0.15% l-Met (LMET; n = 9), 0.15% dl-Met (DLMET; n = 11), or 0.17% dl-HMTBA (DLHMTBA; n = 9) on an equimolar basis. At age 54 d the pigs received a continuous infusion of [1-13C]-Cys to calculate Cys flux and Cys oxidation. After 3 d, GSH FSR was determined by [2,2-2H2]-glycine infusion, and RBC GSH and oxidized GSH concentrations were measured. At age 62 d the animals were killed to determine hepatic mRNA abundances of enzymes involved in GSH metabolism, GSH concentrations, and plasma oxidative stress defense markers. RESULTS The Cys oxidation was 21-39% and Cys flux 5-15% higher in the fed relative to the feed-deprived state (P < 0.001). On average, GSH FSR was 49% lower (P < 0.01), and RBC GSH and total GSH concentrations were 12% and 9% lower, respectively, in DLHMTBA and DLMET relative to LMET pigs (P < 0.05). In the feed-deprived state, Gly flux, the GSH:oxidized glutathione (GSSG) ratio, RBC GSSG concentrations, plasma oxidative stress markers, and the hepatic GSH content did not differ between groups. CONCLUSIONS Although GSH FSR was higher in LMET compared with DLMET or DLHMTBA feed-deprived pigs, these differences were not reflected by lower oxidative stress markers and antioxidant defense enzymes in LMET pigs.
Collapse
Affiliation(s)
- Ilka Rasch
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Chair of Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
11
|
Hasan MS, Crenshaw MA, Liao SF. Dietary lysine affects amino acid metabolism and growth performance, which may not involve the GH/IGF-1 axis, in young growing pigs1. J Anim Sci 2020; 98:skaa004. [PMID: 31922564 PMCID: PMC6986777 DOI: 10.1093/jas/skaa004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Lysine is the first limiting amino acid (AA) in typical swine diets. Our previous research showed that dietary lysine restriction compromised the growth performance of late-stage finishing pigs, which was associated with the changes in plasma concentrations of nutrient metabolites and hormone insulin-like growth factor 1 (IGF-1). This study was conducted to investigate how dietary lysine restriction affects the plasma concentrations of selected metabolites and three anabolic hormones in growing pigs. Twelve individually penned young barrows (Yorkshire × Landrace; 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (n = 6). Two corn and soybean meal based diets were formulated to contain 0.65% and 0.98% standardized ileal digestible lysine as a lysine-deficient (LDD) and a lysine-adequate (LAD) diets, respectively. During the 8-week feeding trial, pigs had ad libitum access to water and their respective diets, and the growth performance parameters including average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. At the end of the trial, jugular vein blood was collected for plasma preparation. The plasma concentrations of free AA and six metabolites were analyzed with the established chemical methods, and the hormone concentrations were analyzed with the commercial ELISA kits. Data were analyzed with Student's t-test. The ADG of LDD pigs was lower (P < 0.01) than that of LAD pigs, and so was the G:F (P < 0.05) since there was no difference in the ADFI between the two groups of pigs. In terms of free AA, the plasma concentrations of lysine, methionine, leucine, and tyrosine were lower (P < 0.05), while that of β-alanine was higher (P < 0.01), in the LDD pigs. The total plasma protein concentration was lower (P < 0.02) in the LDD pigs, whereas no differences were observed for the other metabolites between the two groups. No differences were observed in the plasma concentrations of growth hormone (GF), insulin, and IGF-1 between the two groups as well. These results indicate that the lack of lysine as a protein building block must be the primary reason for a reduced body protein synthesis and, consequently, the compromised G:F ratio and ADG. The changes in the plasma concentrations of total protein and four AA suggest that the compromised growth performance might be associated with some cell signaling and metabolic pathways that may not involve the GH/IGF-1 axis.
Collapse
Affiliation(s)
- M Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Mark A Crenshaw
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| |
Collapse
|