1
|
Candelise N, Caissutti D, Zenuni H, Nesci V, Scaricamazza S, Salvatori I, Spinello Z, Mattei V, Garofalo T, Ferri A, Valle C, Misasi R. Different Chronic Stress Paradigms Converge on Endogenous TDP43 Cleavage and Aggregation. Mol Neurobiol 2023; 60:6346-6361. [PMID: 37450246 PMCID: PMC10533643 DOI: 10.1007/s12035-023-03455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023]
Abstract
The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Henri Zenuni
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | - Valentina Nesci
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Illari Salvatori
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy.
| |
Collapse
|
2
|
Myrka A, Buck L. Cytoskeletal Arrest: An Anoxia Tolerance Mechanism. Metabolites 2021; 11:metabo11080561. [PMID: 34436502 PMCID: PMC8401981 DOI: 10.3390/metabo11080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerization of actin filaments and microtubules constitutes a ubiquitous demand for cellular adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP). In anoxia-tolerant animals, ATP consumption is minimized during overwintering conditions, but little is known about the role of cell structure in anoxia tolerance. Studies of overwintering mammals have revealed that microtubule stability in neurites is reduced at low temperature, resulting in withdrawal of neurites and reduced abundance of excitatory synapses. Literature for turtles is consistent with a similar downregulation of peripheral cytoskeletal activity in brain and liver during anoxic overwintering. Downregulation of actin dynamics, as well as modification to microtubule organization, may play vital roles in facilitating anoxia tolerance. Mitochondrial calcium release occurs during anoxia in turtle neurons, and subsequent activation of calcium-binding proteins likely regulates cytoskeletal stability. Production of reactive oxygen species (ROS) formation can lead to catastrophic cytoskeletal damage during overwintering and ROS production can be regulated by the dynamics of mitochondrial interconnectivity. Therefore, suppression of ROS formation is likely an important aspect of cytoskeletal arrest. Furthermore, gasotransmitters can regulate ROS levels, as well as cytoskeletal contractility and rearrangement. In this review we will explore the energetic costs of cytoskeletal activity, the cellular mechanisms regulating it, and the potential for cytoskeletal arrest being an important mechanism permitting long-term anoxia survival in anoxia-tolerant species, such as the western painted turtle and goldfish.
Collapse
Affiliation(s)
- Alexander Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
| | - Leslie Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-416-978-3506
| |
Collapse
|
3
|
Warling A, Uchida R, Shin H, Dodelson C, Garcia ME, Shea-Shumsky NB, Svirsky S, Pothast M, Kelley H, Schumann CM, Brzezinski C, Bauman MD, Alexander A, McKee AC, Stein TD, Schall M, Jacobs B. Putative dendritic correlates of chronic traumatic encephalopathy: A preliminary quantitative Golgi exploration. J Comp Neurol 2020; 529:1308-1326. [PMID: 32869318 DOI: 10.1002/cne.25022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is associated with repetitive head impacts. Neuropathologically, it is defined by the presence of perivascular hyperphosphorylated tau aggregates in cortical tissue (McKee et al., 2016, Acta Neuropathologica, 131, 75-86). Although many pathological and assumed clinical correlates of CTE have been well characterized, its effects on cortical dendritic arbors are still unknown. Here, we quantified dendrites and dendritic spines of supragranular pyramidal neurons in tissue from human frontal and occipital lobes, in 11 cases with (Mage = 79 ± 7 years) and 5 cases without (Mage = 76 ± 11 years) CTE. Tissue was stained with a modified rapid Golgi technique. Dendritic systems of 20 neurons per region in each brain (N = 640 neurons) were quantified using computer-assisted morphometry. One key finding was that CTE neurons exhibited increased variability and distributional changes across six of the eight dendritic system measures, presumably due to ongoing degeneration and compensatory reorganization of dendritic systems. However, despite heightened variation among CTE neurons, CTE cases exhibited lower mean values than Control cases in seven of the eight dendritic system measures. These dendritic alterations may represent a new pathological marker of CTE, and further examination of dendritic changes could contribute to both mechanistic and functional understandings of the disease.
Collapse
Affiliation(s)
- Allysa Warling
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Riri Uchida
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Hyunsoo Shin
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Coby Dodelson
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Madeleine E Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - N Beckett Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Sarah Svirsky
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Morgan Pothast
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hunter Kelley
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Sacramento, California, USA
| | - Christine Brzezinski
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Sacramento, California, USA
| | - Allyson Alexander
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann C McKee
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA.,VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA.,VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of Psychology, Colorado College, Colorado Springs, Colorado, USA
| |
Collapse
|