1
|
Niknam S, Duraisamy S, Botev J, Leiva LA. Brain Signatures of Time Perception in Virtual Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2535-2545. [PMID: 40063491 DOI: 10.1109/tvcg.2025.3549570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Achieving a high level of immersion and adaptation in virtual reality (VR) requires precise measurement and representation of user state. While extrinsic physical characteristics such as locomotion and pose can be accurately tracked in real-time, reliably capturing mental states is more challenging. Quantitative psychology allows considering more intrinsic features like emotion, attention, or cognitive load. Time perception, in particular, is strongly tied to users' mental states, including stress, focus, and boredom. However, research on objectively measuring the pace at which we perceive the passage of time is scarce. In this work, we investigate the potential of electroencephalography (EEG) as an objective measure of time perception in VR, exploring neural correlates with oscillatory responses and time-frequency analysis. To this end, we implemented a variety of time perception modulators in VR, collected EEG recordings, and labeled them with overestimation, correct estimation, and underestimation time perception states. We found clear EEG spectral signatures for these three states, that are persistent across individuals, modulators, and modulation duration. These signatures can be integrated and applied to monitor and actively influence time perception in VR, allowing the virtual environment to be purposefully adapted to the individual to increase immersion further and improve user experience. A free copy of this paper and all supplemental materials are available at https://vrarlab.uni.lu/pub/brain-signatures.
Collapse
|
2
|
Harada T, Mioni G, Cellini N, Yotsumoto Y. No significant relationship found between spontaneous motor tempo, heartbeat, and individual alpha frequency: an analysis of internal tempos. Sci Rep 2025; 15:2310. [PMID: 39824839 PMCID: PMC11742397 DOI: 10.1038/s41598-024-83338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing. Despite the associations of SMT, heart rate, and IAF with intrinsic tempo, their interrelations remain unexplored. In this pre-registered study, we measured SMT, IAF, and heart rate in 32 healthy university students aged 18-21 and examined how these variables relate to each other. During the experiment, participants sat with their eyes closed for 5 min while we recorded their EEG and heart rate. They then tapped the space key with their index finger at their most comfortable tempo, which we used to determine SMT. Participants also completed a questionnaire about their age, chronotype, and musical experience. Our results showed no significant correlations among SMT, heart rate, and IAF. Regression analysis further confirmed that SMT is not influenced by heart rate or IAF. Therefore, no significant relationships among behavioral, physiological, and neuroscience-related tempo were uncovered. Our contribution lies in measuring SMT, heart rate, and IAF within the same experimental context. All procedures, including scripts used for the analyses, were pre-registered before data collection, and we report these null results to mitigate publication bias.
Collapse
Affiliation(s)
- Tamaka Harada
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Giovanna Mioni
- Department of General Psychology, University of Padova, Padua, Italy
| | - Nicola Cellini
- Department of General Psychology, University of Padova, Padua, Italy
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Figueroa-Taiba P, Álvarez-Ruf J, Ulloa P, Bruna-Melo T, Espinoza-Maraboli L, Burgos PI, Mariman JJ. Potentiation of Motor Adaptation Via Cerebellar tACS: Characterization of the Stimulation Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2487-2496. [PMID: 39433720 PMCID: PMC11585488 DOI: 10.1007/s12311-024-01748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45 Hz, 50 Hz, 55 Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45 Hz, 55 Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9 mA). In Experiment 1, 45 Hz and 50 Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45 Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45 Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.
Collapse
Affiliation(s)
- Paulo Figueroa-Taiba
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile
| | - Joel Álvarez-Ruf
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile
| | - Paulette Ulloa
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Trinidad Bruna-Melo
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Fisioterapia en Movimiento, Grupo de investigación Multiespecialidad (PTinMOTION), Departamento de Fisioterapia, Facultad de Fisioterapia, Universidad de Valencia, Valencia, 46010, España
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Liam Espinoza-Maraboli
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Pablo Ignacio Burgos
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratorio de Neurorrehabilitación y control motor, Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Balance Disorder Lab, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, OP-32, Portland, OR, 97239, USA
| | - Juan J Mariman
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Núcleo de Bienestar y Desarrollo Humano, Centro de Investigación en Educación (CIE- UMCE), Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.
| |
Collapse
|
4
|
Mokhtarinejad E, Tavakoli M, Ghaderi AH. Exploring the correlation and causation between alpha oscillations and one-second time perception through EEG and tACS. Sci Rep 2024; 14:8035. [PMID: 38580671 PMCID: PMC10997657 DOI: 10.1038/s41598-024-57715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Alpha oscillations have been implicated in time perception, yet a consensus on their precise role remains elusive. This study directly investigates this relationship by examining the impact of alpha oscillations on time perception. Resting-state EEG recordings were used to extract peak alpha frequency (PAF) and peak alpha power (PAP) characteristics. Participants then performed a time generalization task under transcranial alternating current stimulation (tACS) at frequencies of PAF-2, PAF, and PAF+2, as well as a sham condition. Results revealed a significant correlation between PAP and accuracy, and between PAF and precision of one-second time perception in the sham condition. This suggests that alpha oscillations may influence one-second time perception by modulating their frequency and power. Interestingly, these correlations weakened with real tACS stimulations, particularly at higher frequencies. A second analysis aimed to establish a causal relationship between alpha peak modulation by tACS and time perception using repeated measures ANOVAs, but no significant effect was observed. Results were interpreted according to the state-dependent networks and internal clock model.
Collapse
Affiliation(s)
- Ehsan Mokhtarinejad
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
| | - Mahgol Tavakoli
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran.
| | - Amir Hossein Ghaderi
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
- Center for Affective Neuroscience, Development, Learning and Education, University of Southern California (USC), Los Angeles, USA
| |
Collapse
|
5
|
Liu Y, Ma S, Li J, Song X, Du F, Zheng M. Factors influencing passage of time judgment in individuals' daily lives: evidence from the experience sampling and diary methods. PSYCHOLOGICAL RESEARCH 2024; 88:466-475. [PMID: 37466675 DOI: 10.1007/s00426-023-01859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
People often express feeling that time passes quickly or slowly in their daily lives, which is termed passage of time judgment (PoTJ). Past studies have shown that PoTJ is affected by emotional valence and arousal; however, few studies have verified the effects of alertness, attention to time, and time expectation on PoTJ and whether the effects are stable over different time periods. Using the experience sampling method (ESM) and diary method, the present study collected data from 105 participants and examined for the first time whether alertness, attention to time, and time expectation affect PoTJ based on daily life data, as well as whether above factors, emotional valence, and arousal are stable over different time periods. All participants answered a questionnaire five times a day on their in-the-day PoTJ and related factors regarding the last 30 min, and answered the same questionnaire once a day at 23:00 regarding the of-the-day PoTJ. The results showed that alertness and time expectation, as well as emotional valence and arousal, predicted an individual's in-the-day PoTJ over a shorter period (i.e., the last 30 min); in contrast, only time expectation and emotional arousal predicted of-the-day PoTJ over a longer period (i.e., the past day). These results suggest that, alertness and time expectation are important factors influencing PoTJ, in addition to emotional state. Of-the-day PoTJ correlates most strongly with the mean and latest in-the-day PoTJ, implying that overall perception of time passage is influenced by both cumulative temporal experience and recent temporal experience.
Collapse
Affiliation(s)
- Yanci Liu
- Department of Psychology, Tsinghua University, Beijing, 100084, China
| | - Siyu Ma
- Department of Psychology, Tsinghua University, Beijing, 100084, China
| | - Jiayu Li
- Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Xi Song
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Psychology Department, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Du
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Psychology Department, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Meihong Zheng
- Department of Psychology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Bader F, Wiener M. Neuroimaging Signatures of Metacognitive Improvement in Sensorimotor Timing. J Neurosci 2024; 44:e1789222023. [PMID: 38129131 PMCID: PMC10904090 DOI: 10.1523/jneurosci.1789-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Error monitoring is an essential human ability underlying learning and metacognition. In the time domain, humans possess a remarkable ability to learn and adapt to temporal intervals, yet the neural mechanisms underlying this are not clear. Recently, we demonstrated that humans improve sensorimotor time estimates when given the chance to incorporate previous trial feedback ( Bader and Wiener, 2021), suggesting that humans are metacognitively aware of their own timing errors. To test the neural basis of this metacognitive ability, human participants of both sexes underwent fMRI while they performed a visual temporal reproduction task with randomized supra-second intervals (1.5-6 s). Crucially, each trial was repeated following feedback, allowing a "re-do" to learn from the successes or errors in the initial trial. Behaviorally, we replicated our previous finding of improved re-do trial performance despite temporally uninformative (i.e., early or late) feedback. For neuroimaging, we observed a dissociation between estimating and reproducing time intervals. Estimation engaged the default mode network (DMN), including the superior frontal gyri, precuneus, and posterior cingulate, whereas reproduction activated regions associated traditionally with the "timing network" (TN), including the supplementary motor area (SMA), precentral gyrus, and right supramarginal gyrus. Notably, greater and more extensive DMN involvement was observed in re-do trials, whereas for the TN, it was more constrained. Task-based connectivity between these networks demonstrated higher inter-network correlation primarily when estimating initial trials, while re-do trial communication was higher during reproduction. Overall, these results suggest that the DMN and TN jointly mediate subjective self-awareness to improve timing performance.
Collapse
Affiliation(s)
- Farah Bader
- Department of Psychology, George Mason University, Fairfax, Virginia, 22030
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, Virginia, 22030
| |
Collapse
|
7
|
Azizi L, Polti I, van Wassenhove V. Spontaneous α Brain Dynamics Track the Episodic "When". J Neurosci 2023; 43:7186-7197. [PMID: 37704373 PMCID: PMC10601376 DOI: 10.1523/jneurosci.0816-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 09/15/2023] Open
Abstract
Across species, neurons track time over the course of seconds to minutes, which may feed the sense of time passing. Here, we asked whether neural signatures of time-tracking could be found in humans. Participants stayed quietly awake for a few minutes while being recorded with magnetoencephalography (MEG). They were unaware they would be asked how long the recording lasted (retrospective time) or instructed beforehand to estimate how long it will last (prospective timing). At rest, rhythmic brain activity is nonstationary and displays bursts of activity in the alpha range (α: 7-14 Hz). When participants were not instructed to attend to time, the relative duration of α bursts linearly predicted individuals' retrospective estimates of how long their quiet wakefulness lasted. The relative duration of α bursts was a better predictor than α power or burst amplitude. No other rhythmic or arrhythmic activity predicted retrospective duration. However, when participants timed prospectively, the relative duration of α bursts failed to predict their duration estimates. Consistent with this, the amount of α bursts was discriminant between prospective and retrospective timing. Last, with a control experiment, we demonstrate that the relation between α bursts and retrospective time is preserved even when participants are engaged in a visual counting task. Thus, at the time scale of minutes, we report that the relative time of spontaneous α burstiness predicts conscious retrospective time. We conclude that in the absence of overt attention to time, α bursts embody discrete states of awareness constitutive of episodic timing.SIGNIFICANCE STATEMENT The feeling that time passes is a core component of consciousness and episodic memory. A century ago, brain rhythms called "α" were hypothesized to embody an internal clock. However, rhythmic brain activity is nonstationary and displays on-and-off oscillatory bursts, which would serve irregular ticks to the hypothetical clock. Here, we discovered that in a given lapse of time, the relative bursting time of α rhythms is a good indicator of how much time an individual will report to have elapsed. Remarkably, this relation only holds true when the individual does not attend to time and vanishes when attending to it. Our observations suggest that at the scale of minutes, α brain activity tracks episodic time.
Collapse
Affiliation(s)
- Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Gif/Yvette 91191, France
| | - Ignacio Polti
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway 7030
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany D-04103
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Gif/Yvette 91191, France
| |
Collapse
|
8
|
Houshmand Chatroudi A, Yotsumoto Y. No evidence for the effect of entrainment's phase on duration reproduction and precision of regular intervals. Eur J Neurosci 2023; 58:3037-3057. [PMID: 37369629 DOI: 10.1111/ejn.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Perception of time is not always veridical; rather, it is subjected to distortions. One such compelling distortion is that the duration of regularly spaced intervals is often overestimated. One account suggests that excitatory phases of neural entrainment concomitant with such stimuli play a major role. However, assessing the correlation between the power of entrained oscillations and time dilation has yielded inconclusive results. In this study, we evaluated whether phase characteristics of neural oscillations impact time dilation. For this purpose, we entrained 10-Hz oscillations and experimentally manipulated the presentation of flickers so that they were presented either in-phase or out-of-phase relative to the established rhythm. Simultaneous electroencephalography (EEG) recordings confirmed that in-phase and out-of-phase flickers had landed on different inhibitory phases of high-amplitude alpha oscillations. Moreover, to control for confounding factors of expectancy and masking, we created two additional conditions. Results, supplemented by the Bayesian analysis, indicated that the phase of entrained visual alpha oscillation does not differentially affect flicker-induced time dilation. Repeating the same experiment with regularly spaced auditory stimuli replicated the null findings. Moreover, we found a robust enhancement of precision for the reproduction of flickers relative to static stimuli that were partially supported by entrainment models. We discussed our results within the framework of neural oscillations and time-perception models, suggesting that inhibitory cycles of visual alpha may have little relevance to the overestimation of regularly spaced intervals. Moreover, based on our findings, we proposed that temporal oscillators, assumed in entrainment models, may act independently of excitatory phases in the brain's lower level sensory areas.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Liang M, Lomayesva S, Isham EA. Dissociable Roles of Theta and Alpha in Sub-Second and Supra-Second Time Reproduction: An Investigation of their Links to Depression and Anxiety. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A growing collection of observations has demonstrated the presence of multiple neural oscillations participating in human temporal cognition and psychiatric pathologies such as depression and anxiety. However, there remains a gap in the literature regarding the specific roles of these neural oscillations during interval timing, and how these oscillatory activities might vary with the different levels of mental health. The current study examined the participation of the frontal midline theta and occipital alpha oscillations, both of which are prevalent cortical oscillatory markers frequently reported in working memory and time perception paradigms. Participants performed a time reproduction task in the sub- (400, 600, 800 ms) and supra-second timescales (1600, 1800, 2000 ms) while undergoing scalp EEG recordings. Anxiety and depression levels were measured via self-report mental health inventories. Time–frequency analysis of scalp EEG revealed that both frontal midline and occipital alpha oscillations were engaged during the encoding of the durations. Furthermore, we observed that the correlational relationship between frontal midline theta power and the reproduction performance in the sub-second range was modulated by state anxiety. In contrast, the correlational relationship between occipital alpha and the reproduction performance of supra-second intervals was modulated by depression and trait anxiety. The results offer insights on how alpha and theta oscillations differentially play a role in interval timing and how mental health further differentially relates these neural oscillations to sub- and supra-second timescales.
Collapse
Affiliation(s)
- Mingli Liang
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Sara Lomayesva
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Eve A. Isham
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
No effects of prefrontal multichannel tACS at individual alpha frequency on phonological decisions. Clin Neurophysiol 2022; 142:96-108. [DOI: 10.1016/j.clinph.2022.07.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022]
|
11
|
Bjekić J, Živanović M, Paunović D, Vulić K, Konstantinović U, Filipović SR. Personalized Frequency Modulated Transcranial Electrical Stimulation for Associative Memory Enhancement. Brain Sci 2022; 12:472. [PMID: 35448003 PMCID: PMC9025454 DOI: 10.3390/brainsci12040472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Associative memory (AM) is the ability to remember the relationship between previously unrelated items. AM is significantly affected by normal aging and neurodegenerative conditions, thus there is a growing interest in applying non-invasive brain stimulation (NIBS) techniques for AM enhancement. A growing body of studies identifies posterior parietal cortex (PPC) as the most promising cortical target for both transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) to modulate a cortico-hippocampal network that underlines AM. In that sense, theta frequency oscillatory tES protocols, targeted towards the hallmark oscillatory activity within the cortico-hippocampal network, are increasingly coming to prominence. To increase precision and effectiveness, the need for EEG guided individualization of the tES protocols is proposed. Here, we present the study protocol in which two types of personalized oscillatory tES-transcranial alternating current stimulation (tACS) and oscillatory transcranial direct current stimulation (otDCS), both frequency-modulated to the individual theta-band frequency (ITF), are compared to the non-oscillatory transcranial direct current stimulation (tDCS) and to the sham stimulation. The study has cross-over design with four tES conditions (tACS, otDCS, tDCS, sham), and the comprehensive set of neurophysiological (resting state EEG and AM-evoked EEG) and behavioral outcomes, including AM tasks (short-term associative memory, face-word, face-object, object-location), as well as measures of other cognitive functions (cognitive control, verbal fluency, and working memory).
Collapse
Affiliation(s)
- Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Marko Živanović
- Institute of Psychology and Laboratory for Research of Individual Differences, Department of Psychology, Faculty of Philosophy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dunja Paunović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Katarina Vulić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Uroš Konstantinović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Saša R. Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| |
Collapse
|
12
|
Bromazepam increases the error of the time interval judgments and modulates the EEG alpha asymmetry during time estimation. Conscious Cogn 2022; 100:103317. [PMID: 35364385 DOI: 10.1016/j.concog.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
AIM This study investigated the bromazepam effects in male subjects during the time estimation performance and EEG alpha asymmetry in electrodes associated with the frontal and motor cortex. MATERIAL AND METHODS This is a double-blind, crossover study with a sample of 32 healthy adults under control (placebo) vs. experimental (bromazepam) during visual time-estimation task in combination with electroencephalographic analysis. RESULTS The results demonstrated that the bromazepam increased the relative error in the 4 s, 7 s, and 9 s intervals (p = 0.001). In addition, oral bromazepam modulated the EEG alpha asymmetry in cortical areas during the time judgment (p ≤ 0.025). CONCLUSION The bromazepam decreases the precision of time estimation judgments and modulates the EEG alpha asymmetry, with greater left hemispheric dominance during time perception. Our findings suggest that bromazepam influences internal clock synchronization via the modulation of GABAergic receptors, strongly relating to attention, conscious perception, and behavioral performance.
Collapse
|
13
|
Temporal binding window and sense of agency are related processes modifiable via occipital tACS. PLoS One 2021; 16:e0256987. [PMID: 34506528 PMCID: PMC8432734 DOI: 10.1371/journal.pone.0256987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/02/2022] Open
Abstract
The temporal binding window refers to the time frame within which temporal grouping of sensory information takes place. Sense of agency is the feeling of being in control of one’s actions, and their associated outcomes. While previous research has shown that temporal cues and multisensory integration play a role in sense of agency, no studies have directly assessed whether individual differences in the temporal binding window and sense of agency are associated. In all three experiments, to assess sense of agency, participants pressed a button triggering, after a varying delay, the appearance of the circle, and reported their sense of agency over the effect. To assess the temporal binding window a simultaneity judgment task (Experiment 1) and a double-flash illusion task (Experiment 2 and 3) was also performed. As expected, the temporal binding window correlated with the sense of agency window. In Experiment 3, these processes were modulated by applying occipital tACS at either 14Hz or 8Hz. We found 14Hz tACS stimulation was associated with narrower temporal biding window and sense of agency window. Our results suggest the temporal binding window and the time window of sense of agency are related. They also point towards a possible underlying neural mechanism (alpha peak frequency) for this association.
Collapse
|
14
|
Janssens SEW, Sack AT, Ten Oever S, de Graaf TA. Calibrating rhythmic stimulation parameters to individual EEG markers: the consistency of individual alpha frequency in practical lab settings. Eur J Neurosci 2021; 55:3418-3437. [PMID: 34363269 PMCID: PMC9541964 DOI: 10.1111/ejn.15418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Rhythmic stimulation can be applied to modulate neuronal oscillations. Such 'entrainment' is optimized when stimulation frequency is individually-calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres, and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short EEG measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on four days (between-sessions), with multiple measurements over an hour on one day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional 'maximum' method and a 'Gaussian fit' method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the 'Gaussian fit' method was more reliable than the 'maximum' method. Furthermore, we evaluated how far from an approximated 'true' task-related IAF the selected 'stimulation frequency' was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10Hertz for all participants. For the 'maximum' method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hertz. For the 'Gaussian fit' method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hertz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre , Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
15
|
Liang M, Zheng J, Isham E, Ekstrom A. Common and Distinct Roles of Frontal Midline Theta and Occipital Alpha Oscillations in Coding Temporal Intervals and Spatial Distances. J Cogn Neurosci 2021; 33:2311-2327. [PMID: 34347871 DOI: 10.1162/jocn_a_01765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Judging how far something is and how long it takes to get there is critical to memory and navigation. Yet, the neural codes for spatial and temporal information remain unclear, particularly the involvement of neural oscillations in maintaining such codes. To address these issues, we designed an immersive virtual reality environment containing teleporters that displace participants to a different location after entry. Upon exiting the teleporters, participants made judgments from two given options regarding either the distance they had traveled (spatial distance condition) or the duration they had spent inside the teleporters (temporal duration condition). We wirelessly recorded scalp EEG while participants navigated in the virtual environment by physically walking on an omnidirectional treadmill and traveling through teleporters. An exploratory analysis revealed significantly higher alpha and beta power for short-distance versus long-distance traversals, whereas the contrast also revealed significantly higher frontal midline delta-theta-alpha power and global beta power increases for short versus long temporal duration teleportation. Analyses of occipital alpha instantaneous frequencies revealed their sensitivity for both spatial distances and temporal durations, suggesting a novel and common mechanism for both spatial and temporal coding. We further examined the resolution of distance and temporal coding by classifying discretized distance bins and 250-msec time bins based on multivariate patterns of 2- to 30-Hz power spectra, finding evidence that oscillations code fine-scale time and distance information. Together, these findings support partially independent coding schemes for spatial and temporal information, suggesting that low-frequency oscillations play important roles in coding both space and time.
Collapse
|
16
|
Venskus A, Hughes G. Individual differences in alpha frequency are associated with the time window of multisensory integration, but not time perception. Neuropsychologia 2021; 159:107919. [PMID: 34153304 DOI: 10.1016/j.neuropsychologia.2021.107919] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Previous research provides some preliminary evidence to link the temporal binding window, the time frame within which multisensory information from different sensory modalities is integrated, and time perception. In addition, alpha peak frequency has been proposed to be the neural mechanism for both processes. However, these links are not well established. Hence, the aim of the current study was to explore to what degree, if any, time perception, the temporal binding window and the alpha peak frequency are related. It was predicted that as the width of the temporal binding window increases the size of the filled duration illusion increases and the alpha peak frequency decreases. We observed a significant relationship between the temporal binding window and peak alpha frequency. However, time perception was not linked with either of these. These findings are discussed with respect to the possible underlying mechanisms of multisensory integration and time perception.
Collapse
Affiliation(s)
- Agnese Venskus
- Department of Psychology, University of Essex, Colchester, CO4 3SQ, UK.
| | - Gethin Hughes
- Department of Psychology, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|