1
|
Xie Y, Yang S, Xu Y, Gu P, Zhang Y, You X, Yin H, Shang B, Yao Y, Li W, Wang D, Zhou T, Song Y, Chen W, Ma J. Interleukin-11 drives fibroblast metabolic reprogramming in crystalline silica-induced lung fibrosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174976. [PMID: 39047838 DOI: 10.1016/j.scitotenv.2024.174976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Environmental exposure to crystalline silica (CS) particles is common and occurs during natural, industrial, and agricultural activities. Prolonged inhalation of CS particles can cause silicosis, a serious and incurable pulmonary fibrosis disease. However, the underlying mechanisms remain veiled. Herein, we aim to elucidate the novel mechanisms of interleukin-11 (IL-11) driving fibroblast metabolic reprogramming during the development of silicosis. We observed that CS exposure induced lung fibrosis in mice and activated fibroblasts, accompanied by increased IL-11 expression and metabolic reprogramming switched from mitochondrial respiration to glycolysis. Besides, we innovatively uncovered that elevated IL-11 promoted the glycolysis process, thereby facilitating the fibroblast-myofibroblast transition (FMT). Mechanistically, CS-stimulated IL-11 activated the extracellular signal-regulated kinase (ERK) pathway and the latter increased the expression of hypoxia inducible factor-1α (HIF-1α) via promoting the translation and delaying the degradation of the protein. HIF-1α further facilitated glycolysis, driving the FMT process and ultimately the formation of silicosis. Moreover, either silence or neutralization of IL-11 inhibited glycolysis augmentation and attenuated CS-induced lung myofibroblast generation and fibrosis. Overall, our findings elucidate the role of IL-11 in promoting fibroblast metabolic reprogramming through the ERK-HIF-1α axis during CS-induced lung fibrosis, providing novel insights into the molecular mechanisms and potential therapeutic targets of silicosis.
Collapse
Affiliation(s)
- Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiju Xu
- Chongchuan Center for Disease Control and Prevention, Nantong 226000, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingxin Shang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Li
- Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Long L, Dai X, Yao T, Zhang X, Jiang G, Cheng X, Jiang M, He Y, Peng Z, Hu G, Tao L, Meng J. Mefunidone alleviates silica-induced inflammation and fibrosis by inhibiting the TLR4-NF-κB/MAPK pathway and attenuating pyroptosis in murine macrophages. Biomed Pharmacother 2024; 178:117216. [PMID: 39096618 DOI: 10.1016/j.biopha.2024.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
AIMS Silicosis is the most common and severe type of pneumoconiosis, imposing a substantial disease burden and economic loss on patients and society. The pathogenesis and key targets of silicosis are not yet clear, and there are currently no effective treatments available. Therefore, we conducted research on mefunidone (MFD), a novel antifibrotic drug, to explore its efficacy and mechanism of action in murine silicosis. METHODS Acute 7-day and chronic 28-day silicosis models were constructed in C57BL/6J mice by the intratracheal instillation of silica and subsequently treated with MFD to assess its therapeutic potential. The effects of MFD on silica-induced inflammation, pyroptosis, and fibrosis were further investigated using immortalized mouse bone marrow-derived macrophages (iBMDMs). RESULTS In the 7-day silica-exposed mouse models, MFD treatment significantly alleviated pulmonary inflammation and notably reduced macrophage infiltration into the lung tissue. RNA-sequencing analysis of silica-induced iBMDMs followed by gene set enrichment analysis revealed that MFD profoundly influenced cytokine-cytokine receptor interactions, chemokine signaling, and the toll-like receptor signaling pathways. MFD treatment also markedly reduced the secretion of inflammatory cytokines and chemokines from silica-exposed iBMDMs. Moreover, MFD effectively downregulated the activation of the TLR4-NF-κB/MAPK signaling pathway induced by silica and mitigated the upregulation of pyroptosis markers. Additionally, MFD treatment significantly suppressed the activation of fibroblasts and alveolar epithelial cells co-cultured with silica-exposed mouse macrophages. Ultimately, in the 28-day silica-exposed mouse models, MFD administration led to a substantial reduction in the severity of pulmonary fibrosis. CONCLUSION MFD mitigates silica-induced pulmonary inflammation and fibrosis in mice by suppressing the TLR4-NF-κB/MAPK signaling pathway and reducing pyroptotic responses in macrophages. MFD could potentially emerge as a novel therapeutic agent for the treatment of silicosis.
Collapse
Affiliation(s)
- Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Xiaoqing Dai
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Tingting Yao
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Xiangyu Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gaoyun Hu
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China; Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
3
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
4
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
5
|
Pu S, Yang Z, Zhang X, Li M, Han N, Yang X, He J, Yu G, Meng X, Jia Q, Shao H. Fermented cordyceps powder alleviates silica-induced pulmonary inflammation and fibrosis in rats by regulating the Th immune response. Chin Med 2023; 18:131. [PMID: 37828528 PMCID: PMC10571334 DOI: 10.1186/s13020-023-00823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Silicosis is an important occupational disease caused by inhalation of free silica and is characterized by persistent pulmonary inflammation, subsequent fibrosis and lung dysfunction. Until now, there has been no effective treatment for the disease due to the complexity of pathogenesis. Fermented cordyceps powder (FCP) has a similar effect to natural cordyceps in tonifying the lung and kidney. It has started to be used in the adjuvant treatment of silicosis. This work aimed to verify the protective effects of FCP against silicosis, and to explore the related mechanism. METHODS Wistar rats were randomly divided into four groups including the saline-instilled group, the silica-exposed group, the silica + FCP (300 mg/kg) group and the silica + FCP (600 mg/kg) group. Silicosis rat models were constructed by intratracheal instillation of silica (50 mg). Rats in the FCP intervention groups received the corresponding dose of FCP daily by intragastric gavage. Rats were sacrificed on days 7, 28 and 56 after treatment, then samples were collected for further analysis. RESULTS FCP intervention reduced the infiltration of inflammatory cells and the concentration of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) at days 7, 28, 56, and decreased the expression of collagen, α-smooth muscle actin (α-SMA) and fibronectin (FN) at days 28 and 56 in the lung of silicosis rats. FCP also decreased the immune response of Th1 and Th17 at days 7, 28, 56 and inhibited the enhancement of the Th2 response at day 56. CONCLUSIONS FCP intervention could alleviate silica-induced pulmonary inflammation and fibrosis, the protective effect may be achieved by reducing Th1 and Th17 immune responses and inhibiting the enhancement of the Th2 response.
Collapse
Affiliation(s)
- Shuangshuang Pu
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250355, Shandong, China
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Zhifeng Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Xiaofeng Zhang
- Linyi County Center for Disease Control and Prevention, Linyi County, 91 Yongxing Street, Dezhou, 251500, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Na Han
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Jin He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Xiangjing Meng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China.
| | - Hua Shao
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250355, Shandong, China.
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China.
| |
Collapse
|
6
|
Wang Y, Cheng D, Li Z, Sun W, Zhou S, Peng L, Xiong H, Jia X, Li W, Han L, Liu Y, Ni C. IL33-mediated NPM1 promotes fibroblast-to-myofibroblast transition via ERK/AP-1 signaling in silica-induced pulmonary fibrosis. Toxicol Sci 2023; 195:71-86. [PMID: 37399107 DOI: 10.1093/toxsci/kfad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
Silicosis is a global occupational pulmonary disease due to the accumulation of silica dust in the lung. Lacking effective clinical drugs makes the treatment of this disease quite challenging in clinics largely because the pathogenic mechanisms remain obscure. Interleukin 33 (IL33), a pleiotropic cytokine, could promote wound healing and tissue repair via the receptor ST2. However, the mechanisms governing the involvement of IL33 in silicosis progression remain to be further explored. Here, we demonstrated that the IL33 levels in the lung sections were significantly overexpressed after bleomycin and silica treatment. Chromatin immunoprecipitation assay, knockdown, and reverse experiments were performed in lung fibroblasts to prove gene interaction following exogenous IL33 treatment or cocultured with silica-treated lung epithelial cells. Mechanistically, we illustrated that silica-stimulated lung epithelial cells secreted IL33 and further promoted the activation, proliferation, and migration of pulmonary fibroblasts by activating the ERK/AP-1/NPM1 signaling pathway in vitro. And more, treatment with NPM1 siRNA-loaded liposomes markedly protected mice from silica-induced pulmonary fibrosis in vivo. In conclusion, the involvement of NPM1 in the progression of silicosis is regulated by the IL33/ERK/AP-1 signaling axis, which is the potential therapeutic target candidate in developing novel antifibrotic strategies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Li R, Kang H, Chen S. From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. Int J Mol Sci 2023; 24:ijms24098333. [PMID: 37176040 PMCID: PMC10179659 DOI: 10.3390/ijms24098333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Silicosis, characterized by irreversible pulmonary fibrosis, remains a major global public health problem. Nowadays, cumulative studies are focusing on elucidating the pathogenesis of silicosis in order to identify preventive or therapeutic antifibrotic agents. However, the existing research on the mechanism of silica-dust-induced pulmonary fibrosis is only the tip of the iceberg and lags far behind clinical needs. Idiopathic pulmonary fibrosis (IPF), as a pulmonary fibrosis disease, also has the same problem. In this study, we examined the relationship between silicosis and IPF from the perspective of their pathogenesis and fibrotic characteristics, further discussing current drug research and limitations of clinical application in silicosis. Overall, this review provided novel insights for clinical treatment of silicosis with the hope of bridging the gap between research and practice in silicosis.
Collapse
Affiliation(s)
- Rou Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Huimin Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
8
|
Yi Z, Dong S, Wang X, Xu M, Li Y, Xie L. Exploratory study on noninvasive biomarker of silicosis in exhaled breath by solid-phase microextraction-gas chromatography-mass spectrometry analysis. Int Arch Occup Environ Health 2023:10.1007/s00420-023-01971-y. [PMID: 37067574 DOI: 10.1007/s00420-023-01971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/25/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND As a chronic occupational disease, silicosis could cause irreversible and incurable impair to the lung. The current diagnosis of silicosis relies on imaging of X-ray or CT, but these methods cannot detect lung lesions in the early stage of silicosis. OBJECTIVE To establish a regular screening and early diagnosis methods for silicosis, which could be helpful for the prevention and treatment of silicosis. METHODS A total of 161 subjects were enrolled in the study, including 69 patients with silicosis (SILs) and 92 healthy controls. The exhaled breath samples of the subjects were collected with breath sampler and Tedlar bag. The analysis of volatile organic compounds (VOCs) in exhaled breath was performed by solid-phase microextraction (SPME) combined with gas chromatography mass spectrometry (GC-MS). RESULTS After excluding the pollutants from sampling bags and instruments, 86 VOCs have been identified in the exhaled breath. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was employed for the screening of potential biomarkers of silicosis. Those components that related to smoking were also excluded from the biomarkers. Finally, nine possible biomarkers for silicosis were screened out, including 2,3-butanedione, ethyl acetate, chlorobenzene, o-cymene, 4-ethylhex-2-ynal, 3,5-dimethyl-3-heptanol, hydroquinone, phthalic anhydride and 5-(2-methylpropyl)nonane. Based on these biomarkers screened, a predicted model for silicosis was generated with the accuracy of 89.61%. CONCLUSION The nine biomarkers in exhaled breath were preliminarily screened out for the early diagnosis of silicosis, which can be helpful to the establishment of a noninvasive screening method for silicosis. Follow-up studies should be conducted to further verify these markers.
Collapse
Affiliation(s)
- Zonghui Yi
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Simin Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Wang
- Chengdu Center for Disease Control and Prevention, Chengdu, 610066, China
| | - Mucen Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Sun XY, Li HZ, Xie DF, Gao SS, Huang X, Guan H, Bai CJ, Zhou PK. LPAR5 confers radioresistance to cancer cells associated with EMT activation via the ERK/Snail pathway. J Transl Med 2022; 20:456. [PMID: 36199069 PMCID: PMC9533496 DOI: 10.1186/s12967-022-03673-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a critical event contributing to more aggressive phenotypes in cancer cells. EMT is frequently activated in radiation-targeted cells during the course of radiotherapy, which often endows cancers with acquired radioresistance. However, the upstream molecules driving the signaling pathways of radiation-induced EMT have not been fully delineated. METHODS In this study, RNA-seq-based transcriptome analysis was performed to identify the early responsive genes of HeLa cells to γ-ray irradiation. EMT-associated genes were knocked down by siRNA technology or overexpressed in HeLa cells and A549 cells, and the resulting changes in phenotypes of EMT and radiosensitivity were assessed using qPCR and Western blotting analyses, migration assays, colony-forming ability and apoptosis of flow cytometer assays. RESULTS Through RNA-seq-based transcriptome analysis, we found that LPAR5 is downregulated in the early response of HeLa cells to γ-ray irradiation. Radiation-induced alterations in LPAR5 expression were further revealed to be a bidirectional dynamic process in HeLa and A549 cells, i.e., the early downregulating phase at 2 ~ 4 h and the late upregulating phase at 24 h post-irradiation. Overexpression of LPAR5 prompts EMT programing and migration of cancer cells. Moreover, increased expression of LPAR5 is significantly associated with IR-induced EMT and confers radioresistance to cancer cells. Knockdown of LPAR5 suppressed IR-induced EMT by attenuating the activation of ERK signaling and downstream Snail, MMP1, and MMP9 expression. CONCLUSIONS LPAR5 is an important upstream regulator of IR-induced EMT that modulates the ERK/Snail pathway. This study provides further insights into understanding the mechanism of radiation-induced EMT and identifies promising targets for improving the effectiveness of cancer radiation therapy.
Collapse
Affiliation(s)
- Xiao-Ya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hao-Zheng Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Da-Fei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shan-Shan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xin Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Chen-Jun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ping-Kun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China. .,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
10
|
Niu Z, Wang L, Qin X, Ye Z, Xie B, Hu Y. Macrophage derived miR-7219-3p-containing exosomes mediate fibroblast trans-differentiation by targeting SPRY1 in silicosis. Toxicology 2022; 479:153310. [PMID: 36075289 DOI: 10.1016/j.tox.2022.153310] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Silicosis is one of the most serious occupational diseases with the main feature of inflammatory cell infiltration, fibroblasts activation, and large deposition of extracellular matrix in the lung. Increasing evidence indicates that macrophage-derived exosomes may play an important role in the development of silicosis by transferring their loaded microRNAs (miRNAs). Hence we carried out high-throughput sequencing to identify the expression of exosomal miRNA from macrophages exposed to silica or not in the previous study. Then we verified that miR-7219-3p was significantly up-regulated in macrophages and their exosomes after silica-exposure, as well as in the silicotic mice model by qRT-PCR, subsequent experiments confirmed that the increase of miR-7219-3p facilitated fibroblast to myofibroblast trans-differentiation (FMT), as well as cell proliferation and migration. Spouty1 (SPRY1), which served as a negative modulator of the Ras/ERK/MAPK signaling pathway, was verified as the target gene of miR-7219-3p, the knockdown or over-expression of SPRY1 apparently promoted or inhibited FMT via the Ras/ERK/MAPK signaling pathway. Furthermore, the inhibition of exosomal miR-7219-3p partially suppressed FMT and silica-induced pulmonary fibrosis in vitro and in vivo. In brief, our results demonstrated that exosomal miR-7219-3p played an important role in FMT and might be a novel therapeutic target of silicosis.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, PR China
| | - Xiaofeng Qin
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Bin Xie
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China
| | - Yongbin Hu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, PR China.
| |
Collapse
|
11
|
Cheng D, Xu Q, Wang Y, Li G, Sun W, Ma D, Zhou S, Liu Y, Han L, Ni C. Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. J Transl Med 2021; 19:349. [PMID: 34399790 PMCID: PMC8365894 DOI: 10.1186/s12967-021-03036-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Silicosis is one of the most common occupational pulmonary fibrosis caused by respirable silica-based particle exposure, with no ideal drugs at present. Metformin, a commonly used biguanide antidiabetic agent, could activate AMP-activated protein kinase (AMPK) to exert its pharmacological action. Therefore, we sought to investigate the role of metformin in silica-induced lung fibrosis. Methods The anti-fibrotic role of metformin was assessed in 50 mg/kg silica-induced lung fibrosis model. Silicon dioxide (SiO2)-stimulated lung epithelial cells/macrophages and transforming growth factor-beta 1 (TGF-β1)-induced differentiated lung fibroblasts were used for in vitro models. Results At the concentration of 300 mg/kg in the mouse model, metformin significantly reduced lung inflammation and fibrosis in SiO2-instilled mice at the early and late fibrotic stages. Besides, metformin (range 2–10 mM) reversed SiO2-induced cell toxicity, oxidative stress, and epithelial-mesenchymal transition process in epithelial cells (A549 and HBE), inhibited inflammation response in macrophages (THP-1), and alleviated TGF-β1-stimulated fibroblast activation in lung fibroblasts (MRC-5) via an AMPK-dependent pathway. Conclusions In this study, we identified that metformin might be a potential drug for silicosis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03036-5.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210028, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|