1
|
Yan M, Liu H, Yang Y, Cheng X, Sun W, Ma T, Cai X. Clinical characteristics of survivors versus non-survivors after acute diquat poisoning: a comparative study. Intern Emerg Med 2024; 19:307-312. [PMID: 38066343 PMCID: PMC10954934 DOI: 10.1007/s11739-023-03460-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/10/2023] [Indexed: 03/21/2024]
Abstract
The aim of this study was to compare the clinical characteristics between survivors and non-survivors after acute diquat (DQ) poisoning. Patients treated in the Emergency Department of Fu Yang People's Hospital for DQ poisoning between January 2018 and February 2022 were enrolled in this retrospective comparative study. A total of 65 patients were collected, including 36 males (55.4%) and 29 females (44.6%). There were 34 survivors (52.3%), and 31 non-survivors (47.7%). Patients in the non-survivor group were significantly older (P = 0.003), received a higher dose of DQ before admission (P < 0.001), had more severe organ damage (P < 0.001), lower respiration rate (P < 0.001) and enema (P = 0.009), lower GCS score (P = 0.038), and higher SIRS score (P = 0.018) and APACHE-II score (P < 0.001) than patients in the survivor group. Additionally, biochemical indicators after admission between survivors and non-survivors were significantly different (all P < 0.05). Multivariate logistic regression analysis showed that respiratory failure (P = 0.021), the dose of DQ (P = 0.022), respiratory rate (P = 0.007), and highest alanine transaminase (ALT) level after admission (P = 0.030) were independent risk factors for acute DQ-induced death. These data suggest that non-survivors with acute DQ poisoning are more likely to suffer from respiratory failure, have higher respiratory rate and ALT after admission, and are exposed higher doses of DQ before admission than survivors.
Collapse
Affiliation(s)
- Min Yan
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Hongbo Liu
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Yihong Yang
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Xin Cheng
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Wanpeng Sun
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Tengfei Ma
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China
| | - Xiaopei Cai
- Emergency Department, Fuyang People's Hospital, Fuyang, 236000, China.
| |
Collapse
|
2
|
Lucchesi CA, Vasilatis DM, Mantrala S, Chandrasekar T, Mudryj M, Ghosh PM. Pesticides and Bladder Cancer: Mechanisms Leading to Anti-Cancer Drug Chemoresistance and New Chemosensitization Strategies. Int J Mol Sci 2023; 24:11395. [PMID: 37511154 PMCID: PMC10380322 DOI: 10.3390/ijms241411395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple risk factors have been associated with bladder cancer. This review focuses on pesticide exposure, as it is not currently known whether agricultural products have a direct or indirect effect on bladder cancer, despite recent reports demonstrating a strong correlation. While it is known that pesticide exposure is associated with an increased risk of bladder cancer in humans and dogs, the mechanism(s) by which specific pesticides cause bladder cancer initiation or progression is unknown. In this narrative review, we discuss what is currently known about pesticide exposure and the link to bladder cancer. This review highlights multiple pathways modulated by pesticide exposure with direct links to bladder cancer oncogenesis/metastasis (MMP-2, TGF-β, STAT3) and chemoresistance (drug efflux, DNA repair, and apoptosis resistance) and potential therapeutic tactics to counter these pesticide-induced affects.
Collapse
Affiliation(s)
- Christopher A. Lucchesi
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Demitria M. Vasilatis
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Saisamkalpa Mantrala
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
| | - Thenappan Chandrasekar
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Yang W, Tian R, Zhu Y, Huang P, Ma X, Meng X, Dai W, Tao Y, Chen D, Zhang J, Lu J, Xie H, Jian X, Yang Z, Wang R. Paraquat is an agonist of STIM1 and increases intracellular calcium levels. Commun Biol 2022; 5:1151. [PMID: 36310238 PMCID: PMC9618025 DOI: 10.1038/s42003-022-04130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Paraquat (PQ) is an efficient herbicide but leads to high mortality with no antidote in mammals. PQ produces reactive oxygen species (ROS), leading to epithelial-mesenchymal transition (EMT) for pulmonary fibrosis in type II alveolar (AT II) cells. Intriguingly, strategies reducing ROS exhibit limited therapeutic effects, indicating other targets existing for PQ toxicity. Herein we report that PQ is also an agonist for STIM1 that increases intracellular calcium levels. Particularly, PQ promotes STIM1 puncta formation and association with TRPC1 or ORAI for extracellular calcium entry and thus intracellular calcium influx. Further studies reveal the importance of P584&Y586 residues in STIM1 for PQ association that facilitates STIM1 binding to TRPC1. Consequently, the STIM1-TRPC1 route facilitates PQ-induced EMT for pulmonary fibrosis as well as cell death. Our results demonstrate that PQ is an agonist of STIM1 that induces extracellular calcium entry, increases intracellular calcium levels, and thus promotes EMT in AT II cells.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Rui Tian
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Peijie Huang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Xinrun Ma
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Yiming Tao
- Department of Poisoning and Occupational Diseases, Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Daonan Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Jiaxiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Zhengfeng Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China.
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China.
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China.
| |
Collapse
|