1
|
Bellomo A, Herbert J, Kudlak MJ, Laskin JD, Gow AJ, Laskin DL. Identification of early events in nitrogen mustard pulmonary toxicity that are independent of infiltrating inflammatory cells using precision cut lung slices. Toxicol Appl Pharmacol 2024; 486:116941. [PMID: 38677601 DOI: 10.1016/j.taap.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 μM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 μM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.
Collapse
Affiliation(s)
- Alyssa Bellomo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Melissa J Kudlak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Ye F, Wang X, Liu H, Dong X, Cheng J, Chen M, Dan G, Sai Y, Zou Z. HSP90/CDC37 inactivation promotes degradation of LKB1 protein to suppress AMPK signaling in bronchial epithelial cells exposed to sulfur mustard analog, 2-chloroethyl ethyl sulfide. Chem Biol Interact 2023; 382:110643. [PMID: 37481222 DOI: 10.1016/j.cbi.2023.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.
Collapse
Affiliation(s)
- Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaogang Wang
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Ye F, Zeng Q, Dan G, Zhao Y, Yu W, Cheng J, Chen M, Wang B, Zhao J, Sai Y, Zou Z. Sulfur mustard analog 2-chloroethyl ethyl sulfide increases triglycerides by activating DGAT1-dependent biogenesis and inhibiting PGC1ɑ-dependent fat catabolism in immortalized human bronchial epithelial cells. Toxicol Mech Methods 2022; 33:271-278. [PMID: 36106344 DOI: 10.1080/15376516.2022.2124898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Using sulfur mustard analog 2-chloroethyl ethyl sulfide (CEES), we established an in vitro model by poisoning cultured immortalized human bronchial epithelial cells. Nile Red staining revealed lipids accumulated 24 h after a toxic dose of CEES (0.9 mM). Lipidomics analysis showed most of the increased lipids were triglycerides (TGs), and the increase in TGs was further confirmed using a Triglyceride-Glo™ Assay kit. Protein and mRNA levels of DGAT1, an important TG biogenesis enzyme, were increased following 0.4 mM CEES exposure. Under higher dose CEES (0.9 mM) exposure, protein and mRNA levels of PPARγ coactivator-1ɑ (PGC-1ɑ), a well-known transcription factor that regulates fatty acid oxidation, were decreased. Finally, application with DGAT1 inhibitor A 922500 or PGC1ɑ agonist ZLN005 was able to block the CEES-induced TGs increase. Overall, our dissection of CEES-induced TGs accumulation provides new insight into energy metabolism dysfunction upon vesicant exposure.HIGHLIGHTSIn CEES (0.9 mM)-injured cells:Triglycerides (TGs) were abundant in the accumulated lipids.Expression of DGAT1, not DGAT2, was increased.Expression of PGC1ɑ, not PGC1β, was reduced.DGAT1 inhibitor or PGC1ɑ agonist blocked the CEES-mediated increase in TGs.
Collapse
Affiliation(s)
- Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qinya Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bin Wang
- Department of Medical Adiministration, Dongda Proctology Hospital, Beijing, 100020, China
| | - Jiqing Zhao
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|