1
|
Firouzeh G, Susan A, Zeinab K. Quercetin prevents rats from type 1 diabetic liver damage by inhibiting TGF-ꞵ/apelin gene expression. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100201. [PMID: 39351284 PMCID: PMC11440311 DOI: 10.1016/j.crphar.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Hyperglycemia-induced oxidative stress is a significant contributor to diabetic complications, including hepatopathy. The current survey aimed to evaluate the ameliorative effect of quercetin (Q) on liver functional disorders and tissue damage developed by diabetes mellitus in rats. Methods Grouping of 35 male Wistar rats was performed as follows: sham; sham + quercetin (sham + Q: quercetin, 50 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage); diabetic control (Diabetes: streptozotocin (STZ), 65 mg/kg, i.p.); diabetic + quercetin 1 (D + Q1: quercetin, 25 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage after STZ injection); and diabetic + quercetin 2 (D + Q2: quercetin, 50 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage after STZ injection). Body weight, food intake, and water intake were measured. Ultimately, the samples of plasma and urine, as well as tissue samples of the liver and pancreas were gathered for later assays. Results STZ injection ended in elevated plasma blood glucose levels, decreased plasma insulin levels, liver dysfunction (increased activity levels of AST, ALT, and ALP, increased plasma levels of total bilirubin, cholesterol, LDL, triglyceride, decreased plasma levels of total protein, albumin and HDL), enhanced levels of malondialdehyde, diminished activities of antioxidant enzymes (superoxide dismutase, and catalase), reduced level of glutathione (GSH) increased gene expression levels of apelin and TGF-ꞵ, plus liver histological destruction. All these changes were diminished by quercetin. However, the measure of improvement in the D + Q2 group was higher than that of the D + Q1 group. Conclusions Quercetin improved liver function after diabetes mellitus type 1, possibly due to reduced lipid peroxidation, increased antioxidant systems, and inhibiting the apelin/TGF-ꞵ signaling pathway.
Collapse
Affiliation(s)
| | - Abbasi Susan
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Karimi Zeinab
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Kumar V, Kumar R, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates Di-2-ethylhexyl phthalate (DEHP) induced hepatotoxicity in a mouse model via TNF-α and NF-κβ signaling. 3 Biotech 2024; 14:181. [PMID: 38911474 PMCID: PMC11189377 DOI: 10.1007/s13205-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Di-(2-ethylhexyl) phthalic acid (DEHP) pollutes the environment, and posing a significant risk to human and animal health. Consequently, a successful preventative strategy against DEHP-induced liver toxicity needs to be investigated. Morin hydrate (MH), a flavanol compound, possesses toxic preventive attributes against various environmental pollutants. However, the effects of MH have not been investigated against DEHP-induced liver toxicity. Female Swiss albino mice were divided into four groups: control, DEHP (orally administered with 500 mg/kg, DEHP plus MH 10 mg/kg, and DEHP plus MH 100 mg/kg for 14 days. The results showed that the MH treatment ameliorated the DEHP-induced liver dysfunctions by decreasing the alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, liver histoarchitecture, fibrosis, and markers of oxidative stress. Furthermore, DEHP increased apoptosis, increased active caspase 3 and decreased B cell lymphoma-2 (Bcl-2) expression. However, the MH treatment showed a differential effect on these proteins; a lower dose increased, and a higher dose decreased the expression. Thus, a lower dose of MH could be involved in the disposal of damaged hepatocytes. Expression of Estrogen receptors alpha (ERα) also showed a similar trend with active caspase 3. Furthermore, the expression of Tumor necrosis factor alpha (TNF-α) and Nuclear factor-κβ (NF-κβ) were up-regulated by DEHP treatment, and MH treatment down-regulated the expression of these two inflammatory markers. Since this down-regulation of TNF-α and NF-κβ coincides with improved liver functions against DEHP-induced toxicity, it can be concluded that MH-mediated liver function involves the singling of TNF-α and NF-κβ.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004 India
| |
Collapse
|
3
|
Yadav R, Kumar D, Singh J, Jangra A. Environmental toxicants and nephrotoxicity: Implications on mechanisms and therapeutic strategies. Toxicology 2024; 504:153784. [PMID: 38518838 DOI: 10.1016/j.tox.2024.153784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Kidneys are one of the most important organs in the human body. In addition to filtering 200 liters of fluid every 24 hours, the kidney also regulates acid-base balance, maintains electrolyte balance, and removes waste and toxicants from the body. Nephrotoxicity is the term used to describe the deterioration of kidney function caused by the harmful effects of medications and various types of environmental toxicants. Exposure to environmental toxicants is an inevitable side effect in the world's increasing industrialization and even more prevalent in underdeveloped nations. Growing data over the past few years has illuminated the probable connection between environmental toxicants and nephrotoxicity. Phthalates, microplastics, acrylamide and bisphenol A are environmental toxicants of particular concern, which are known to have nephrotoxic effects. Such toxicants may accumulate in the kidneys of humans after being consumed, inhaled, or come into contact with the skin. They can enter cells through endocytosis and accumulate in the cytoplasm. Small-sized nephrotoxicants can cause a variety of ailments including inflammation with increased production of pro-inflammatory cytokines, oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. This study uncovers the potential for new insights concerning the relationship between various environmental toxicants and kidney health. The objectives of this review is to establish information gaps, assess and identify the toxicity mechanisms of different nephrotoxicants, identify innovative pharmacological therapies that demonstrate promising therapeutic benefits/ relevance, and discuss the predictions for the future based on the analysis of the literature.
Collapse
Affiliation(s)
- Rachna Yadav
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| | - Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| |
Collapse
|
4
|
Cai H, Li K, Yin Y, Ni X, Xu S. Quercetin alleviates DEHP exposure-induced pyroptosis and cytokine expression changes in grass carp L8824 cell line by inhibiting ROS/MAPK/NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109223. [PMID: 37972744 DOI: 10.1016/j.fsi.2023.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is not only a widely used plasticizer but also a common endocrine disruptor that frequently lingers in water, posing a threat to the health of aquatic organisms. Quercetin (Que) is a common flavonol found in the plant kingdom known for its antioxidant, anti-inflammatory, and immunomodulatory effects. However, it is still unclear whether DEHP can cause pyroptosis and affect the expression of cytokines of grass carp L8824 cells and whether Que has antagonistic effect in this process. In our study, grass carp L8824 cells were treated into four groups after 24 h, namely NC group, DEHP group (1000 μM DEHP), Que group (5 μM Que), and DEHP + Que group (1000 μM DEHP + 5 μM Que). Our results indicate a significant increase in the level of ROS in L8824 cells after exposure to DEHP. DEHP upregulated oxidative stress markers (H2O2 and MDA) and downregulated antioxidant markers (CAT, GSH, SOD, and T-AOC). DEHP also upregulated MAPK and NF-κB signal pathway-related proteins and mRNA expressions (p-p38, p-JNK, p-EPK, and p65). As for cell pyroptosis and its related pathways, DEHP upregulated pyroptosis-related protein and mRNA expressions (GSDMD, IL-1β, NLRP3, Caspase-1, LDH, pro-IL-18, IL-18, and ASC). Finally, DEHP can up-regulated cytokines (IL-6 and TNF-α) expression, down-regulated cytokines (IL-2 and IFN-γ) expression, and antimicrobial peptides (β-defensin, LEAP2, and HEPC). The co-treatment of L8824 cells with DEHP and Que inhibited the activation of the ROS/MAPK/NF-κB axis, alleviated pyroptosis, and restored expression of immune-related indicators. Finally, NAC was applied to reverse intervention of oxidative stress. In summary, Que inhibited DEHP-induced pyroptosis and the influence on cytokine and antimicrobial peptide expression in L8824 cells by regulating the ROS/MAPK/NF-κB pathway. Our results demonstrate the threat to fish health from DEHP exposure and confirmed the harm of DEHP to the aquatic ecological environment and the detoxification effect of Que to DEHP, which provides a theoretical basis for environmental toxicology.
Collapse
Affiliation(s)
- Hao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaotong Ni
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1879-1909. [PMID: 37067583 DOI: 10.1007/s00210-023-02487-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Gad El-Karim DRS, Lebda MA, Alotaibi BS, El-kott AF, Ghamry HI, Shukry M. Lutein Modulates Oxidative Stress, Inflammatory and Apoptotic Biomarkers Related to Di-(2-Ethylhexyl) Phthalate (DEHP) Hepato-Nephrotoxicity in Male Rats: Role of Nuclear Factor Kappa B. TOXICS 2023; 11:742. [PMID: 37755751 PMCID: PMC10535989 DOI: 10.3390/toxics11090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
Phthalates are widely distributed in our environment due to their usage in many industries, especially in plastic production, which has become an essential part of daily life. This investigation aimed to assess the potential remedial influence of lutein, a naturally occurring carotenoid, on phthalate-triggered damage to the liver and kidneys. When di-(2-ethylhexyl) phthalate (DEHP) was administered to male albino rats over sixty straight days at a dosage of 200 mg/kg body weight, it resulted in a significant increase in the serum activity of liver enzymes (AST, ALT, and GGT), alpha-fetoprotein, creatinine, and cystatin-C, as well as disruptions in the serum protein profile. In addition, intoxication with DEHP affected hepato-renal tissues' redox balance. It increased the content of some proinflammatory cytokines, nuclear factor kappa B (Nf-κB), and apoptotic marker (caspase-3); likewise, DEHP-induced toxicity and decreased the level of anti-apoptotic protein (Bcl-2) in these tissues. Lutein administration at a dose level of 40 mg/kg b.w efficiently facilitated the changes in serum biochemical constituents, hepato-renal oxidative disturbance, and inflammatory, apoptotic, and histopathological alterations induced by DEHP intoxication. In conclusion, it can be presumed that lutein is protective as a natural carotenoid against DEHP toxicity.
Collapse
Affiliation(s)
- Dina R. S. Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Mohamed A. Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Attalla F. El-kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
7
|
Uzunhisarcikli M, Apaydin FG, Bas H, Kalender Y. The ameliorative effects of quercetin and curcumin against subacute nephrotoxicity of fipronil induced in Wistar rats. Toxicol Res (Camb) 2023; 12:493-502. [PMID: 37397921 PMCID: PMC10311137 DOI: 10.1093/toxres/tfad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 07/04/2023] Open
Abstract
Fipronil is a phenylpyrazole insecticide that is widely used in agricultural, veterinary, and public health fields for controlling a wide variety of insect species and it is an environmentally potent toxic substance. Curcumin and quercetin, which are well-known natural antioxidants, are widely used to prevent the harmful effects of free radicals on biological systems. The present study aimed to determine the potential ameliorative effects of quercetin and/or curcumin on fipronil-induced nephrotoxicity in rats. Curcumin (100 mg/kg of body weight), quercetin (50 mg/kg of body weight), and fipronil (3.88 mg/kg of body weight) were administered to male rats by intragastric gavage for 28 consecutive days. In the present study, body weight, kidney weight, the renal function markers (blood urea nitrogen, creatinine, and uric acid levels) in the blood, antioxidant enzyme activities, and malondialdehyde level as markers of oxidative stress, and histological changes of the renal tissue were evaluated. The levels of serum blood urea nitrogen, creatinine, and uric acid were significantly increased in fipronil-treated animals. Additionally, while superoxide dismutase, catalase, glutathione-S-transferase, and glutathione peroxidase activities were decreased in the kidney tissue of rats treated with fipronil, malondialdehyde level was significantly increased. Histopathological analyses showed that the glomerular and tubular injury occurred in the renal tissue of fipronil-treated animals. Also, the supplementation of quercetin and/or curcumin with fipronil significantly improved fipronil-induced alterations in renal function markers, antioxidant enzyme activities, malondialdehyde levels, and histological features of renal tissue.
Collapse
Affiliation(s)
- Meltem Uzunhisarcikli
- Corresponding author: Vocational High School of Health Services, Gazi University, Gölbaşı, Ankara 06830, Türkiye.
| | - Fatma Gokce Apaydin
- Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye
| | - Hatice Bas
- Faculty of Arts and Science, Department of Biology, Bozok University, Yozgat 66100, Türkiye
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye
| |
Collapse
|
8
|
Ding WJ, Huang SL, Huang S, Xu WP, Wei W. Di(2-ethylhexyl) phthalate mediates oxidative stress and activates p38MAPK/NF-kB to exacerbate diabetes-induced kidney injury in vitro and in vivo models. Toxicol Res (Camb) 2023; 12:332-343. [PMID: 37125328 PMCID: PMC10141783 DOI: 10.1093/toxres/tfad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Plasticizer di(2-ethylhexyl) phthalate (DEHP) is employed to make polyethylene polymers. Some studies in epidemiology and toxicology have shown that DEHP exposure over an extended period may be hazardous to the body, including nephrotoxicity, and aggravate kidney damage in the context of underlying disease. However, studies on the toxicity of DEHP in diabetes-induced kidney injury have been rarely reported. Using a high-fat diet (HFD) and streptozotocin (STZ, 35 mg/kg)-induced kidney injury in mice exposed to various daily DEHP dosages, we explored the impacts of DEHP on diabetes-induced kidney injury. We discovered that DEHP exposure significantly promoted the renal inflammatory response and oxidative stress in mice, with increased P-p38 and P-p65 protein levels and exacerbated the loss of podocin. The same findings were observed in vitro after stimulation of podocytes with high glucose (30 mmol/L) and exposure to DEHP. Our results suggest that DEHP exacerbates diabetes-induced kidney injury by mediating oxidative stress and activating p38MAPK/NF-κB.
Collapse
Affiliation(s)
- Wen-Jie Ding
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Shou-Lin Huang
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Song Huang
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| | - Wei-Ping Xu
- The First Affiliated Hospital of USTC, Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Wei Wei
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, Institute of Clinical Pharmacology of Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
9
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
10
|
Lei Y, Zhang W, Gao M, Lin H. Mechanism of evodiamine blocking Nrf2/MAPK pathway to inhibit apoptosis of grass carp hepatocytes induced by DEHP. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109506. [PMID: 36368504 DOI: 10.1016/j.cbpc.2022.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is often used as a plasticizer for plastic products, and its excessive use can cause irreversible damage to aquatic animals and humans. Evodiamine (EVO) is an alkaloid component in the fruit of Evodia rutaecarpa, which has antioxidant and detoxification functions. To investigate the toxic mechanism of DEHP on grass carp (Ctenopharyngodon idellus) hepatocyte cell line (L8824) and the therapeutic effect of evodiamine, an experimental model of L8824 cells exposed to 800 μM DEHP and/or 10 μM EVO for 24 h was established. Flow cytometry, AO/EB fluorescence staining, real-time quantitative PCR, and western blot were used to detect the degree of cell injury, oxidative stress level, MAPK signaling pathway relative genes, and the expression of apoptosis-related molecules. The results showed that DEHP exposure could significantly increase the level of reactive oxygen species (ROS), inhibit the activities of antioxidant enzymes (CAT, SOD, GSH-Px), and cause the accumulation of MDA. DEHP also activated MAPK signaling pathway-related molecules (JNK, ERK, P38 MAPK), and then up-regulated the expression of pro-apoptotic factors Bcl-2-Associated X (Bax) and caspase 3, while inhibiting the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2). In addition, EVO can also promote the dissociation of nuclear factor-E2-related factor 2 (Nrf2) into the nucleus, reduce the level of ROS and the occurrence of oxidative stress in grass carp hepatocytes, down-regulate the MAPK pathway, alleviate DEHP-induced apoptosis, and restore the expression of antioxidant genes. These results indicated that evodiamine could block Nrf2/MAPK pathway to inhibit DEHP-induced apoptosis of grass carp hepatocytes.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|