1
|
Moreau M, Fisher J, Andersen ME, Barnwell A, Corzine S, Ranade A, McMullen PD, Slattery SD. NAM-based Prediction of Point-of-contact Toxicity in the Lung: A Case Example With 1,3-dichloropropene. Toxicology 2022; 481:153340. [PMID: 36183849 DOI: 10.1016/j.tox.2022.153340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/13/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24hours after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.
Collapse
Affiliation(s)
- Marjory Moreau
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Jeff Fisher
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Asayah Barnwell
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Sage Corzine
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Aarati Ranade
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Patrick D McMullen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Scott D Slattery
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA.
| |
Collapse
|
2
|
Cichocki JA, Morris JB. Inhalation dosimetry modeling provides insights into regional respiratory tract toxicity of inhaled diacetyl. Toxicology 2016; 388:30-39. [PMID: 27851905 DOI: 10.1016/j.tox.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/15/2022]
Abstract
Vapor dosimetry models provide a means of assessing the role of delivered dose in determining the regional airway response to inspired vapors. A validated hybrid computational fluid dynamics physiologically based pharmacokinetic model for inhaled diacetyl has been developed to describe inhaled diacetyl dosimetry in both the rat and human respiratory tracts. Comparison of the distribution of respiratory tract injury with dosimetry estimates provides strong evidence that regional delivered dose rather than regional airway tissue sensitivity to diacetyl-induced injury is the critical determinant of the regional respiratory tract response to this water soluble reactive vapor. In the rat, inhalation exposure to diacetyl causes much lesser injury in the distal bronchiolar airways compared to nose and large tracheobronchial airways. The degree of injury correlates very strongly to model based estimates of local airway diacetyl concentrations. According to the model, regional dosimetry patterns of diacetyl in the human differ greatly from those in the rat with much greater penetration of diacetyl to the bronchiolar airways in the lightly exercising mouth breathing human compared to the rat, providing evidence that rat inhalation toxicity studies underpredict the risk of bronchiolar injury in the human. For example, repeated exposure of the rat to 200ppm diacetyl results in bronchiolar injury; the estimated bronchiolar tissue concentration in rats exposed to 200ppm diacetyl would occur in lightly exercising mouth breathing humans exposed to 12ppm. Consideration of airway dosimetry patterns of inspired diacetyl is critical to the proper evaluation of rodent toxicity data and its relevance for predicting human risk.
Collapse
Affiliation(s)
- Joseph A Cichocki
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - John B Morris
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N. Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
3
|
Corley RA, Kabilan S, Kuprat AP, Carson JP, Jacob RE, Minard KR, Teeguarden JG, Timchalk C, Pipavath S, Glenny R, Einstein DR. Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts. Toxicol Sci 2015; 146:65-88. [PMID: 25858911 PMCID: PMC4476461 DOI: 10.1093/toxsci/kfv071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein.
Collapse
Affiliation(s)
- Richard A Corley
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Senthil Kabilan
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Andrew P Kuprat
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - James P Carson
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Richard E Jacob
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Kevin R Minard
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Justin G Teeguarden
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Charles Timchalk
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Sudhakar Pipavath
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Robb Glenny
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Daniel R Einstein
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
4
|
A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites. Chem Biol Interact 2015; 238:102-10. [PMID: 26079054 DOI: 10.1016/j.cbi.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 11/23/2022]
Abstract
1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells)(1) are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions vary throughout the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD.
Collapse
|
5
|
Morris JB. Nasal dosimetry of inspired naphthalene vapor in the male and female B6C3F1 mouse. Toxicology 2013; 309:66-72. [PMID: 23619605 DOI: 10.1016/j.tox.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/28/2013] [Accepted: 04/12/2013] [Indexed: 11/29/2022]
Abstract
Naphthalene vapor is a nasal cytotoxicant in the rat and mouse but is a nasal carcinogen in only the rat. Inhalation dosimetry is a critical aspect of the inhalation toxicology of inspired vapors and may contribute to the species differences in the nasal response. To define the nasal dosimetry of naphthalene in the B6C3F1 male and female mouse, uptake of naphthalene vapor was measured in the surgically isolated upper respiratory tract (URT) at inspiratory flow rates of 25 or 50 ml/min. Uptake was measured at multiple concentrations (0.5, 3, 10, 30 ppm) in controls and mice treated with the cytochrome P450 inhibitor 5-phenyl-1-pentyne. In both sexes, URT uptake efficiency was strongly concentration dependent averaging 90% at 0.5 ppm compared to 50% at 30 ppm (25 ml/min flow rate), indicating saturable processes were involved. Both uptake efficiency and the concentration dependence of uptake were significantly diminished by 5-phenyl-1-pentyne indicating inspired naphthalene vapor is extensively metabolized in the mouse nose with saturation of metabolism occurring at the higher concentrations. A hybrid computational fluid dynamic physiologically based pharmacokinetic model was developed for nasal dosimetry. This model accurately predicted the observed URT uptake efficiencies. Overall, the high URT uptake efficiency of naphthalene in the mouse nose indicates the absence of a tumorigenic response is not attributable to low delivered dose rates in this species.
Collapse
Affiliation(s)
- John B Morris
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N. Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
6
|
Morris JB. Biologically-based modeling insights in inhaled vapor absorption and dosimetry. Pharmacol Ther 2012; 136:401-13. [PMID: 22964085 DOI: 10.1016/j.pharmthera.2012.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The lung is a route of entry and also a target site for inhaled vapors, therefore, knowledge of the total absorbed dose and/or the dose absorbed in each airway during inhalation exposure is essential. Vapor absorption characteristics result primarily from the fact that vapors demonstrate equilibrium/saturation behavior in fluids. Thus, during inhalation exposures blood and airway tissue vapor concentrations increase to a steady state value and increase no further no matter how long the exposure. High tissue concentrations can be obtained with highly soluble vapors, thus solubility, as measured by blood:air partition coefficient, is a fundamentally important physical/chemical characteristic of vapors. While it is classically thought that vapor absorption occurs only in the alveoli it is now understood that this is not the case. Soluble vapors can be efficiently absorbed in the airways themselves and do not necessarily penetrate to the alveolar level. Such vapors are more likely to injure the proximal than distal airways because that is the site of the greatest delivered dose. There are substantial species differences in airway vapor absorption between laboratory animals and humans making interpretation of laboratory animal inhalation toxicity data difficult. Airway absorption is dependent on vapor solubility and is enhanced by local metabolism and/or direct reaction within airway tissues. Modern simulation models that incorporate terms for solubility, metabolism, and reaction rate accurately predict vapor absorption patterns in both animals and humans and have become essential tools for understanding the pharmacology and toxicology of airborne vapors.
Collapse
Affiliation(s)
- John B Morris
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Gloede E, Cichocki JA, Baldino JB, Morris JB. A validated hybrid computational fluid dynamics-physiologically based pharmacokinetic model for respiratory tract vapor absorption in the human and rat and its application to inhalation dosimetry of diacetyl. Toxicol Sci 2011; 123:231-46. [PMID: 21705714 DOI: 10.1093/toxsci/kfr165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diacetyl vapor is associated with bronchiolar injury in man but primarily large airway injury in the rat. The goal of this study was to develop a physiologically based pharmacokinetic model for inspired vapor dosimetry and to apply the model to diacetyl. The respiratory tract was modeled as a series of airways: nose, trachea, main bronchi, large bronchi, small bronchi, bronchioles, and alveoli with tissue dimensions obtained from the literature. Airborne vapor was allowed to absorb (or desorb) from tissues based on mass transfer coefficients. Transfer of vapor within tissues was based on molecular diffusivity with direct reaction with tissue substrates and/or metabolism being allowed in each tissue compartment. In vitro studies were performed to provide measures of diacetyl metabolism kinetics and direct reaction rates allowing for the development of a model with no unassigned variables. Respiratory tract uptake of halothane, acetone, ethanol and diacetyl was measured in male F344 rat to obtain data for model validation. The human model was validated against published values for inspired vapor uptake. For both the human and rat models, a close concordance of model estimates with experimental measurements was observed, validating the model. The model estimates that limited amounts of inspired diacetyl penetrate to the bronchioles of the rat (<2%), whereas in the lightly exercising human, 24% penetration to the bronchioles is estimated. Bronchiolar tissue concentrations of diacetyl in the human are estimated to exceed those in the rat by 40-fold. These inhalation dosimetric differences may contribute to the human-rat differences in diacetyl-induced airway injury.
Collapse
Affiliation(s)
- Eric Gloede
- Department of Pharmaceutical Sciences, Toxicology Program, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Naphthalene is a nasal toxicant and carcinogen in the rat. Upper respiratory tract (URT) uptake of naphthalene was measured in the male and female F344 rat at exposure concentrations of 1, 4, 10, or 30 ppm at inspiratory flow rates of 150 or 300 ml/min. To assess the potential importance of nasal cytochrome P450 (CYP) metabolism, groups of rats were pretreated with the CYP inhibitor 5-phenyl-1-pentyne (PP) (100 mg/kg, ip). In vitro metabolism of naphthalene was similar in nasal tissues from both genders and was reduced by 80% by the inhibitor. URT uptake in female rats was concentration dependent with uptake efficiencies (flow 150 ml/min) of 56, 40, 34, and 28% being observed at inspired concentrations of 1, 4, 10, and 30 ppm, respectively. A similar effect was observed in male rats (flow 150 ml/min) with uptake efficiencies of 57, 49, 37, and 36% being observed. Uptake was more efficient in the male than female rat, likely due to their larger size (226 vs. 144 g). Uptake of naphthalene was significantly reduced by inhibitor pretreatment with the effect being greater at the lower inspired concentrations. Specifically, in pretreated female rats (150 ml/min), URT uptake averaged 25, 29, and 26% at inspired concentrations of 4, 10, and 30 ppm, respectively. Thus, the concentration dependence of uptake was virtually abolished by PP pretreatment. These results provide evidence that nasal CYP metabolism of naphthalene contributes to URT scrubbing of this vapor and is also involved in the concentration dependence of uptake that is observed.
Collapse
Affiliation(s)
- John B Morris
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| | | |
Collapse
|
9
|
Morris JB, Hubbs AF. Inhalation dosimetry of diacetyl and butyric acid, two components of butter flavoring vapors. Toxicol Sci 2008; 108:173-83. [PMID: 18940962 DOI: 10.1093/toxsci/kfn222] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Occupational exposure to butter flavoring vapors (BFV) is associated with significant pulmonary injury. The goal of the current study was to characterize inhalation dosimetric patterns of diacetyl and butyric acid, two components of BFV, and to develop a hybrid computational fluid dynamic-physiologically based pharmacokinetic model (CFD-PBPK) to describe these patterns. Uptake of diacetyl and butyric acid vapors, alone and in combination, was measured in the upper respiratory tract of anesthetized male Sprague-Dawley rats under constant velocity flow conditions and the uptake data were used to validate the CFD-PBPK model. Diacetyl vapor (100 or 300 ppm) was scrubbed from the airstream with 76-36% efficiency at flows of 100-400 ml/min. Butryic acid (30 ppm) was scrubbed with >90% efficiency. Concurrent exposure to butyric acid resulted in a small but significant reduction of diacetyl uptake (36 vs. 31%, p < 0.05). Diacetyl was metabolized in nasal tissues in vitro, likely by diacetyl reductase, an enzyme known to be inhibited by butyric acid. The CFD-PBPK model closely described diacetyl uptake; the reduction in diacetyl uptake by butyric acid could be explained by inhibition of diacetyl reductase. Extrapolation to the human via the model suggested that inspired diacetyl may penetrate to the intrapulmonary airways to a greater degree in the human than in the rat. Thus, based on dosimetric relationships, extrapulmonary airway injury in the rat may be predictive of intrapulmonary airway injury in humans. Butyric acid may modulate diacetyl toxicity by inhibiting its metabolism and/or altering its inhalation dosimetric patterns.
Collapse
Affiliation(s)
- John B Morris
- Toxicology Program, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | |
Collapse
|
10
|
Abstract
This review summarizes the most recent developments in and applications of physiologically based pharmacokinetic (PBPK) modeling methodology originating from both the pharmaceutical and environmental toxicology areas. It focuses on works published in the last 5 years, although older seminal papers have also been referenced. After a brief introduction to the field and several essential definitions, the main body of the text is structured to follow the major steps of a typical PBPK modeling exercise. Various applications of the methodology are briefly described. The major future trends and perspectives are outlined. The main conclusion from the review of the available literature is that PBPK modeling, despite its obvious potential and recent incremental developments, has not taken the place it deserves, especially in pharmaceutical and drug development sciences.
Collapse
Affiliation(s)
- Ivan Nestorov
- Zymogenetics Inc., 1201 Eastlake Avenue East, Seattle, Washington 98102, USA.
| |
Collapse
|