1
|
Javorac D, Antonijević B, Anđelković M, Repić A, Bulat P, Djordjevic AB, Baralić K, Đukić-Ćosić D, Antonić T, Bulat Z. Oxidative stress, metallomics and blood toxicity after subacute low-level lead exposure in Wistar rats: Benchmark dose analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118103. [PMID: 34520949 DOI: 10.1016/j.envpol.2021.118103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Exposure to lead (Pb) is still rising concern worldwide, having in mind that even low-dose exposure can induce various harmful effects. Thus, in-depth knowledge of the targets of Pb toxicity and corresponding mechanisms is essential. In the presented study, the six groups (male Wistar rats, n = 6) received 0.1; 0.5; 1; 3; 7; 15 mg Pb/kg body weight/day for 28 days, each day by oral gavage, while the control group received distilled water only. All animals were sacrificed 24 h after the treatment, and blood was collected for the analysis of hematological, biochemical, oxidative status and essential elements levels. An external and internal dose-response relationship was performed using PROASTweb 70.1 software. The results showed that low doses of Pb affect hematological parameters and lipid profile after 28 days. The possible mechanisms at examined Pb dose levels were a decrease in SOD, O2•- and Cu and an increase in Zn levels. The dose-dependent nature of changes in cholesterol, HDL cholesterol, O2.-, SOD, AOPP in serum and hemoglobin, Fe, Zn, Cu in blood were obtained in this study. The most sensitive parameters that were alerted are Cu blood levels (BMDL5: 1.4 ng/kg b.w./day) and SOD activity (BMDL5: 0.5 μg/kg b.w./day). The presented results provide information that may be useful in further assessing the health risks of low-level Pb exposure.
Collapse
Affiliation(s)
- Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia; Health Center Kosovska Mitrovica, 38220, Kosovska Mitrovica, Serbia
| | - Aleksandra Repić
- Serbian Institute of Occupational Health "Dr Dragomir Karajović", Belgrade, Serbia
| | - Petar Bulat
- Serbian Institute of Occupational Health "Dr Dragomir Karajović", Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Tamara Antonić
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| |
Collapse
|
2
|
Feriani A, Tir M, Hachani R, Gómez-Caravaca AM, Contreras MDM, Taamalli A, Talhaoui N, Segura-Carretero A, Ghazouani L, Mufti A, Tlili N, El Feki A, Harrath AH, Allagui MS. Zygophyllum album saponins prevent atherogenic effect induced by deltamethrin via attenuating arterial accumulation of native and oxidized LDL in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110318. [PMID: 32105945 DOI: 10.1016/j.ecoenv.2020.110318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The current study aimed to examine, for the first time, the relationship between exposure to deltamethrin (DLM) and atherogenic lipid profile disorders in adult Wistar rats, as well as, to verify the mechanism of the beneficial role of Zygophyllum album leaves extracts (ZALE). The experimental study was assessed using DLM (4 mg/kg b.w) either alone or co administered with ZALE (400 mg/kg b.w) orally for 90 days in rats. RP-HPLC-DAD-ESI-QTOF-MS was used to identify the bioactive metabolites present in ZALE. Plasmatic and aortic total cholesterol (TC), LDL-cholesterol (LDL-C), native LDL (LDL-apo B-100) and oxidized LDL (ox-LDL) were evaluated using auto-analyzer and a sandwich ELISA, respectively. The protein expressions of LDLR (native LDL receptor) and CD36 (Scavenger receptor class B) were evaluated in aorta or liver with a Western blot. The pathology has been confirmed with lipid stain (Oil Red O). Phytochemicals analysis revealed the presence of fifteen saponins in ZALE. Rats intoxicated with DLM revealed a significant increase in plasmatic and aortic lipid profile (TC, LDL-C, LDL-apo B-100 and ox-LDL), as well as, the concentration of the plasmatic cytokines include TNF-α, IL-2 and IL-6, compared to control. Hepatic native LDL and aortic CD36 receptor expression were increased in DLM treated group, however aortic LDL-R does not present any modification, when compared to control. The detected disturbances in lipid parameters were supported by Oil Red O applied. Due to their antioxidant activity, the bioactive compounds in ZALE as powerful agents able to prevent the pro-atherogenic effect observed in DLM-treated animals. These metabolites modulated most of inflammatory markers, prevented accumulation of lipid and lipoprotein biomarkers, regulated the major receptor regulators of hepatic cholesterol metabolism, as well as normalize lipid distribution in liver and aorta tissue.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia.
| | - Meriam Tir
- Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Rafik Hachani
- Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021, Jarzouna, Tunisia; Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Amani Taamalli
- Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O Box 1803, Hafr Al-Batin 31991, Saudi Arabia
| | - Nassima Talhaoui
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Afoua Mufti
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Nizar Tlili
- Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El-Manar, Tunis, 2092, Tunisia; Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia.
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Science of Sfax, 3018, Sfax, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Fadl SE, El-Habashi N, Gad DM, Elkassas WM, Elbialy ZI, Abdelhady DH, Hegazi SM. Effect of addingDunaliellaalgae to fish diet on lead acetate toxicity and gene expression in the liver of Nile tilapia. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1652652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sabreen Ezzat Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Nagwan El-Habashi
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa Mohammed Gad
- Fish Diseases Department, Animal Health Research Institute, Kafrelsheikh, Egypt
| | | | - Zizy Ibrahim Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa Hosny Abdelhady
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sayed Mohammed Hegazi
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
4
|
Jana L, Maity PP, Perveen H, Dash M, Jana S, Dey A, De SK, Chattopadhyay S. Attenuation of utero-toxicity, metabolic dysfunction and inflammation by soy protein concentrate in rats exposed to fluoridated water: consequence of hyperlipidemia in parallel with hypohomocysteinemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36462-36473. [PMID: 30374712 DOI: 10.1007/s11356-018-3542-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Lipid peroxidation and ROS generation are the pathogenesis of chronic fluoride toxicity, and its detrimental effects on human reproduction are noted drastically. The aim of the present study was to elucidate the defensive effects of soy protein concentrate (SPC) against sodium fluoride (NaF)-induced uterine dysfunction at biochemical and histological level. Rats were randomly distributed into four groups as control, NaF-treated (200 ppm), and SPC co-administered groups (20 mg and 40 mg/ 100 g body weight) for 16 days. SPC reversed the toxic effects of NaF. SPC significantly ameliorated the NaF-induced alterations of the antioxidant system in the uterus by decreasing lipid peroxidation products and by increasing antioxidant activities. SPC significantly counteracted the adverse effects of NaF on serum level of lactate dehydrogenase (LDH) and inflammatory markers Interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) and nuclear factor kappa-B (NF-κB). Our results also explored that lipid profile was meaningfully altered due to NaF and also focused a diminution of circulating homocysteine (Hcy) and altered lipid profiles along with a diminished quantity of serum B12 and B9. However, both the doses of SPC reverted back serum levels of B12, B9, and Hcy status in similar fashion along with its corrective action on lipid profile. NaF-treated group exhibited a marked degree of reduction in the weights of ovary and uterus with an alteration of normal tissue histology and significant diminution in serum estradiol (ES) levels without fluctuating uterine estradiol receptor-α (ER-α). However, SPC restored the normal tissue histoarchitecture and also increased the functional efficiency and expression of the ER-α receptor by overturning the ES levels in NaF-treated rats. Moreover, both the doses of SPC were effective against NaF-induced alterations, although 40 mg SPC/100 g body weight had better efficacy in ameliorating the NaF-induced adverse effects on the uterus and ovary.
Collapse
Affiliation(s)
- Lipirani Jana
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Pikash Pratim Maity
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Subrata Kumar De
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
5
|
Dewanjee S, Sahu R, Karmakar S, Gangopadhyay M. Toxic effects of lead exposure in Wistar rats: involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food Chem Toxicol 2013; 55:78-91. [PMID: 23291325 DOI: 10.1016/j.fct.2012.12.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 11/17/2022]
Abstract
Lead (Pb) is considered to be a multi-target toxicant. The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves against Pb-acetate induced toxic manifestation in blood, liver, kidney, brain and heart of Wistar rats. The Pb-acetate (5mg/kg body weight) treated rats exhibited a significant inhibition of co-enzymes Q, antioxidant enzymes and reduced glutathione levels in the tissues. In addition, the extent of lipid peroxidation, DNA fragmentation and haematological parameters were significantly altered in the Pb-acetate treated rats as compared to control. Simultaneous administration of test extract (25, 50 and 100mg/kg body weight), could significantly restore the biochemical and haematological parameters near to the normal status through antioxidant activity and/or by preventing bioaccumulation of Pb within the tissues of experimental rats. Presence of substantial quantity of phenolics and flavonoids in the extract may be responsible for the observed protective role against Pb-intoxication.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700 032, India.
| | | | | | | |
Collapse
|
6
|
Rotimi SO, Ojo DA, Talabi OA, Balogun EA, Ademuyiwa O. Tissue dyslipidemia in Salmonella-infected rats treated with amoxillin and pefloxacin. Lipids Health Dis 2012; 11:152. [PMID: 23137290 PMCID: PMC3528439 DOI: 10.1186/1476-511x-11-152] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study investigated the effects of salmonella infection and its chemotherapy on lipid metabolism in tissues of rats infected orally with Salmonella typhimurium and treated intraperitoneally with pefloxacin and amoxillin. METHODS Animals were infected with Salmonella enterica serovar Typhimurium strain TA 98. After salmonellosis was confirmed, they were divided into 7 groups of 5 animals each. While one group served as infected control group, three groups were treated with amoxillin (7.14 mg/kg body weight, 8 hourly) and the remaining three groups with pefloxacin (5.71 mg/kg body weight, 12 hourly) for 5 and 10 days respectively. Uninfected control animals received 0.1 ml of vehicle. Rats were sacrificed 24h after 5 and 10 days of antibiotic treatment and 5 days after discontinuation of antibiotic treatment. Their corresponding controls were also sacrificed at the same time point. Blood and tissue lipids were then evaluated. RESULTS Salmonella infection resulted in dyslipidemia characterised by increased concentrations of free fatty acids (FFA) in plasma and erythrocyte, as well as enhanced cholesterogenesis, hypertriglyceridemia and phospholipidosis in plasma, low density lipoprotein-very low density lipoprotein (LDL-VLDL), erythrocytes, erythrocyte ghost and the organs. The antibiotics reversed the dyslipidemia but not totally. A significant correlation was observed between fecal bacterial load and plasma cholesterol (r=0.456, p<0.01), plasma triacyglycerols (r=0.485, p<0.01), plasma phospholipid (r=0.414, p<0.05), plasma free fatty acids (r=0.485, p<0.01), liver phospholipid (r=0.459, p<0.01) and brain phospholipid (r=0.343, p<0.05). CONCLUSION The findings of this study suggest that salmonella infection in rats and its therapy with pefloxacin and amoxillin perturb lipid metabolism and this perturbation is characterised by cholesterogenesis.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Biochemistry Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria
| | | | | | | | | |
Collapse
|
7
|
Kojima M, Ashino T, Yoshida T, Iwakura Y, Degawa M. Interleukin-1 controls the constitutive expression of the Cyp7a1 gene by regulating the expression of Cyp7a1 transcriptional regulators in the mouse liver. Biol Pharm Bull 2012; 34:1644-7. [PMID: 21963511 DOI: 10.1248/bpb.34.1644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study using interleukin-1α/β-knockout (IL-1-KO) and wild-type (WT) mice demonstrated that IL-1 acts as a positive factor for constitutive gene expression of hepatic cytochrome P4507a1 (Cyp7a1). In this study, to clarify the role of IL-1 in the expression of the hepatic Cyp7a1 gene, we focused on Cyp7a1 transcriptional regulators such as α-fetoprotein transcription factor (FTF), liver X receptor α (LXRα), hepatocyte nuclear factor 4α (HNF4α) and small heterodimer partner (SHP) and examined the effects of IL-1 on their gene expression by real-time reverse-transcription polymerase chain reaction using IL-1-KO and WT mice. We observed no significant differences between sex-matched IL-1-KO and WT mice with regard to gene expression levels of FTF, LXRα, and HNF4α, all of which are positive transcriptional regulators for the Cyp7a1 gene. However, interindividual differences in hepatic FTF and LXRα expression were closely dependent on the gene expression level(s) of hepatic IL-1 and tumor necrosis factor-α (TNF-α), while interindividual differences in hepatic HNF4α were clearly correlated with the expression of IL-1, but not TNF-α. In contrast, the gene expression level of SHP, which is a negative transcriptional regulator of the Cyp7a1 gene through inhibition of FTF function, was higher in IL-1-KO mice than in sex-matched WT mice. These findings demonstrate that, like TNF-α, IL-1 positively controls the gene expression of Cyp7a1 transcriptional upregulators but, in contrast to the previously reported action of TNF-α, IL-1 also acts to downregulate SHP gene expression.
Collapse
Affiliation(s)
- Misaki Kojima
- Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305–8602, Japan.
| | | | | | | | | |
Collapse
|
8
|
Kojima M, Ashino T, Yoshida T, Iwakura Y, Degawa M. Involvement of Interleukin-1 in Lead Nitrate-Induced Hypercholesterolemia in Mice. Biol Pharm Bull 2012; 35:246-50. [DOI: 10.1248/bpb.35.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Misaki Kojima
- Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences
| | - Takashi Ashino
- Department of Biochemical Toxicology, School of Pharmaceutical Sciences, Showa University
| | - Takemi Yoshida
- Department of Biochemical Toxicology, School of Pharmaceutical Sciences, Showa University
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Masakuni Degawa
- Department of Molecular Toxicology and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
9
|
Nemoto K, Ito S, Yoshida C, Miyata M, Kojima M, Degawa M. Hepatic expression of spermatogenic genes and their transiently remarkable downregulations in Wistar-Kyoto rats in response to lead-nitrate administration: strain-difference in the gene expression patterns. J Toxicol Sci 2011; 36:357-64. [PMID: 21628963 DOI: 10.2131/jts.36.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Administration of lead ion (Pb) to rats and mice affects hepatic functions such as the induction of hepatic cell proliferation and upregulation of cholesterol biosynthesis. To identify the genes for which expression changes in response to Pb-administration, we analyzed hepatic gene expression patterns in stroke-prone spontaneously hypertensive rat (SHRSP), its normotensive control, Wistar-Kyoto rat (WKY), and Spraque-Dawley (SD) rat strains, 3, 6, and 12 hr later after single i.v. injection of lead nitrate (LN) at a dose of 100 µmol using a DNA microarray technique. The data analysis demonstrated that the expression of a great number of genes was transiently and remarkably downregulated 3 hr after LN-injection, and then recovered to control levels only in LN-injected WKY. These normal hepatic expression levels in WKY and SHRSP were much higher than those in SD rats. Furthermore, most of these genes were ones thought to be expressed specifically in the spermatids and/or testes; i.e. genes encoding protamin 1, transition protein 1, and transition protein 2. These findings suggest that the regulation system common to expression of all of these genes could be a target site of Pb-toxic action, at least, in the liver of WKY, and that this system might be similar to the system essential for spermatogenesis, especially spermiogenesis, in the testis. In addition, it appears that clarifying the cause of the difference between the systems of WKY and SHRSP might aid in identifying the pathologic genes in SHRSP. Finally, it will be an important to clarify how the products of the genes related to spermatogenesis, including spermiogenesis, are functional in the livers of WKY and SHRSP.
Collapse
Affiliation(s)
- Kiyomitsu Nemoto
- Department of Molecular Toxicology and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Liu CM, Ma JQ, Sun YZ. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem Toxicol 2011; 49:3119-27. [PMID: 22001170 DOI: 10.1016/j.fct.2011.09.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/16/2022]
Abstract
Puerarin (PU), a natural flavonoid, has been reported to have many benefits and medicinal properties. The aim of the present study was to investigate the effects of puerarin on hepatic oxidative stress and hyperlipidemia in rats exposed to lead. Our data showed that puerarin significantly prevented lead-induced hepatotoxicity, indicated by both diagnostic indicators of liver damage (serum aminotransferase levels) and histopathological analysis. Moreover, lead-induced profound elevation of ROS production and oxidative stress, as evidenced by increasing of lipid peroxidation level, reducing of GPx, GST, GR and GCL activities and depleting of intracellular reduced GSH level in liver, were suppressed by treatment with puerarin. Furthermore, the increase of serum cholesterol, triglycerides and LDL induced by lead was effectively suppressed by puerarin. The HDL level in the lead treatment rats was also increased by puerarin. Western blot analysis showed that puerarin remarkably inhibited hyperlipidemia by regulating the expression of cholesterol 7a-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and low-density lipoprotein receptor (LDL-R) in liver of lead treated rats. Altogether, these results suggest that puerarin could protect the lead-induced liver injury and hyperlipidemia by reducing ROS production, renewing the activities of antioxidant enzymes and influencing expression of hepatic lipid biosynthesis and metabolism genes.
Collapse
Affiliation(s)
- Chan-Min Liu
- School of Life Science, Xuzhou Normal University, No. 101, Shanghai Road, Tangshan New Area, Xuzhou City 221116, Jiangsu Province, PR China.
| | | | | |
Collapse
|
11
|
Sanada H, Sekimoto M, Kamoshita A, Degawa M. Changes in expression of hepatic cytochrome P450 subfamily enzymes during development of adjuvant-induced arthritis in rats. J Toxicol Sci 2011; 36:181-90. [DOI: 10.2131/jts.36.181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hisakazu Sanada
- Department of Molecular Toxicology and Global Center of Excellence Program, School of Pharmaceutical Sciences,University of Shizuoka
- Pharmacokinetics and Safety Research Department Central Research Laboratories, Shizuoka Research Laboratory,Kaken Pharmaceutical Co. Ltd
| | - Masashi Sekimoto
- Department of Molecular Toxicology and Global Center of Excellence Program, School of Pharmaceutical Sciences,University of Shizuoka
| | - Ayaka Kamoshita
- Department of Molecular Toxicology and Global Center of Excellence Program, School of Pharmaceutical Sciences,University of Shizuoka
| | - Masakuni Degawa
- Department of Molecular Toxicology and Global Center of Excellence Program, School of Pharmaceutical Sciences,University of Shizuoka
| |
Collapse
|
12
|
Ademuyiwa O, Agarwal R, Chandra R, Behari JR. Lead-induced phospholipidosis and cholesterogenesis in rat tissues. Chem Biol Interact 2009; 179:314-20. [DOI: 10.1016/j.cbi.2008.10.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
|
13
|
Kojima M, Ashino T, Yoshida T, Iwakura Y, Sekimoto M, Degawa M. IL-1 regulates the Cyp7a1 gene and serum total cholesterol level at steady state in mice. Biochem Biophys Res Commun 2008; 379:239-42. [PMID: 19101514 DOI: 10.1016/j.bbrc.2008.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 12/08/2008] [Indexed: 11/19/2022]
Abstract
We examined the role of hepatic interleukin (IL)-1alpha/beta in serum total cholesterol homeostasis using male and female IL-1-knockout (KO) mice and wild-type (WT) mice. Serum total cholesterol level was higher in males than in females in WT and KO mice. The difference between sexes was closely correlated with the difference in gene expression level of cholesterol 7alpha-hydroxylase (Cyp7a1), a rate-limiting enzyme for bile acid synthesis. No significant sex difference in gene expression level of 3-hydroxy-3-methylglutaryl-CoA reductase, a rate-limiting enzyme for cholesterol synthesis, was observed in WT mice. Interestingly, the gene expression level of hepatic Cyp7a1 was lower in KO mice than in sex-matched WT mice, while the serum total cholesterol level was the opposite. The present findings demonstrate that IL-1alpha and IL-1beta are positive regulators for the Cyp7a1 gene in steady-state mice and that Cyp7a1 is one of the factors that mediate the difference in serum total cholesterol level between sexes.
Collapse
Affiliation(s)
- Misaki Kojima
- Animal Genome Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba 305-8602, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Karthikesan K, Pari L. Caffeic acid alleviates the increased lipid levels of serum and tissues in alcohol-induced [hepatotoxicity in] rats. Fundam Clin Pharmacol 2008; 22:523-7. [PMID: 18752532 DOI: 10.1111/j.1472-8206.2008.00621.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ethanol is one of the most widely used and abused drugs that increases lipid levels in human and experimental animals. The objective of this study was to determine the effect of caffeic acid (CA) on alcohol-induced alterations of lipid levels in serum, liver and kindey of Wistar rats. The alcohol toxicity was induced by oral administration of ethanol (7.9 g/kg/bw) for 45 days through intragastric intubation. The elevation in the levels of lipids upon alcohol administration was accompanied by a significant increase in the levels of cholesterol, phospholipids (PL), free fatty acids (FFA) and triglycerides (TG) in serum, liver and kidney. Oral administration of CA (12 mg/kg/bw) to alcohol fed rats significantly decreased the serum and tissue lipid levels to near those of the control rats. In conclusion, our study suggests that oral administration of CA to alcohol fed rats markedly reduced the accumulation of cholesterol, TG, FFA and PL in circulation, liver and kidney.
Collapse
Affiliation(s)
- Krishnamoorthy Karthikesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamilnadu, India
| | | |
Collapse
|
15
|
Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology 2008; 135:610-20. [PMID: 18586037 PMCID: PMC2648853 DOI: 10.1053/j.gastro.2008.05.032] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Smooth muscle is essential for maintaining homeostasis for many body functions and provides adaptive responses to stresses imposed by pathologic disorders. Identified cell signaling networks have defined many potential mechanisms for initiating smooth muscle contraction with or without myosin regulatory light chain (RLC) phosphorylation by myosin light chain kinase (MLCK). We generated tamoxifen-inducible and smooth muscle-specific MLCK knockout (KO) mice and provide direct loss-of-function evidence that shows the primary importance of MLCK in phasic smooth muscle contractions. METHODS We used the Cre-loxP system to establish Mlck floxed mice in which exons 23, 24, and 25 were flanked by 2 loxP sites. Smooth muscle-specific MLCK KO mice were generated by crossing Mlck floxed mice with SM-CreER(T2) (ki) mice followed by tamoxifen treatment. The phenotype was assessed by histologic, biochemical, molecular, cell biological, and physiologic analyses. RESULTS Targeted deletion of MLCK in adult mouse smooth muscle resulted in severe gut dysmotility characterized by weak peristalsis, dilation of the digestive tract, and reduction of feces excretion and food intake. There was also abnormal urinary bladder function and lower blood pressure. Isolated muscles showed a loss of RLC phosphorylation and force development induced by K(+)-depolarization. The kinase knockout also markedly reduced RLC phosphorylation and force development with acetylcholine which activates Ca(2+)-sensitizing signaling pathways. CONCLUSIONS MLCK and its phosphorylation of RLC are required physiologically for smooth muscle contraction and are essential for normal gastrointestinal motility.
Collapse
|
16
|
Briner WE. The evolution of depleted uranium as an environmental risk factor: lessons from other metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2007; 3:129-35. [PMID: 16823086 PMCID: PMC3807504 DOI: 10.3390/ijerph2006030016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depleted uranium (DU) is used in both civilian and military applications. Civilian uses are primarily limited to ballast and counterweights in ships and aircraft with limited risk of environmental release. The very nature of the military use of DU releases DU into the environment. DU released into the environment from military use takes the form of large fragments that are chemically unchanged and dust in the form of oxides. DU dust is nearly insoluble, respirable and shows little mobility in the soil. Exposure to DU occurs primarily from inhalation of dust and possible hand to mouth activity. Toxicity of DU is believed to be primarily chemical in nature with radiological activity being a lesser problem. DU has been shown to have a variety of behavioral and neurological effects in experimental animals. DU has been used the Balkans, Afghanistan, and both Iraq wars and there is a high probability of its use in future conflicts. Further, other nations are developing DU weaponry; some of these nations may use DU with a greater radiological risk than those currently in use. The toxicity of DU has been studied mostly as an issue of the health of military personnel. However, many tons of DU have been left in the former theater of war and indigenous populations continue to be exposed to DU, primarily in the form of dust. Little epidemiological data exists concerning the impact of DU on these groups. It may be possible to extrapolate what the effects of DU may be on indigenous groups by examining the data on similar metals. DU has many similarities to lead in its route of exposure, chemistry, metabolic fate, target organs, and effect of experimental animals. Studies should be conducted on indigenous groups using lead as a model when ascertaining if DU has an adverse effect.
Collapse
Affiliation(s)
- Wayne E Briner
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE 68849, USA.
| |
Collapse
|