1
|
Huang S, Dou J, Li Z, Hu L, Yu Y, Wang Y. Analysis of Genomic Alternative Splicing Patterns in Rat under Heat Stress Based on RNA-Seq Data. Genes (Basel) 2022; 13:genes13020358. [PMID: 35205403 PMCID: PMC8871965 DOI: 10.3390/genes13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most severe challenges faced in livestock production in summer. Alternative splicing as an important post-transcriptional regulation is rarely studied in heat-stressed animals. Here, we performed and analyzed RNA-sequencing assays on the liver of Sprague-Dawley rats in control (22 °C, n = 5) and heat stress (4 °C for 120 min, H120; n = 5) groups, resulting in the identification of 636 differentially expressed genes. Identification analysis of the alternative splicing events revealed that heat stress-induced alternative splicing events increased by 20.18%. Compared with other types of alternative splicing events, the alternative start increased the most (43.40%) after heat stress. Twenty-eight genes were differentially alternatively spliced (DAS) between the control and H120 groups, among which Acly, Hnrnpd and mir3064 were also differentially expressed. For DAS genes, Srebf1, Shc1, Srsf5 and Ensa were associated with insulin, while Cast, Srebf1, Tmem33, Tor1aip2, Slc39a7 and Sqstm1 were enriched in the composition of the endoplasmic reticulum. In summary, our study conducts a comprehensive profile of alternative splicing in heat-stressed rats, indicating that alternative splicing is one of the molecular mechanisms of heat stress response in mammals and providing reference data for research on heat tolerance in mammalian livestock.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
- Correspondence: (J.D.); (Y.W.)
| | - Zhongshu Li
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Lirong Hu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Ying Yu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Yachun Wang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
- Correspondence: (J.D.); (Y.W.)
| |
Collapse
|
2
|
Mote RS, Hill NS, Skarlupka JH, Tran VT, Walker DI, Turner ZB, Sanders ZP, Jones DP, Suen G, Filipov NM. Toxic tall fescue grazing increases susceptibility of the Angus steer fecal microbiota and plasma/urine metabolome to environmental effects. Sci Rep 2020; 10:2497. [PMID: 32051515 PMCID: PMC7016188 DOI: 10.1038/s41598-020-59104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired thermoregulation and lowered average daily gains (ADG) result when livestock graze toxic endophyte (Epichloë coenophialum)-infected tall fescue (E+) and are hallmark signs of fescue toxicosis (FT), a disease exacerbated by increased temperature and humidity (+temperature-humidity index; +THI). We previously reported FT is associated with metabolic and microbiota perturbations under thermoneutral conditions; here, we assessed the influence of E+ grazing and +THI on the microbiota:metabolome interactions. Using high-resolution metabolomics and 16S rRNA gene sequencing, plasma/urine metabolomes and the fecal microbiota of Angus steers grazing non-toxic or E+ tall fescue were evaluated in the context of +THI. E+ grazing affected the fecal microbiota profile; +THI conditions modulated the microbiota only in E+ steers. E+ also perturbed many metabolic pathways, namely amino acid and inflammation-related metabolism; +THI affected these pathways only in E+ steers. Integrative analyses revealed the E+ microbiota correlated and co-varied with the metabolomes in a THI-dependent manner. Operational taxonomic units in the families Peptococcaceae, Clostridiaceae, and Ruminococcaceae correlated with production parameters (e.g., ADG) and with multiple plasma/urine metabolic features, providing putative FT biomarkers and/or targets for the development of FT therapeutics. Overall, this study suggests that E+ grazing increases Angus steer susceptibility to +THI, and offers possible targets for FT interventions.
Collapse
Affiliation(s)
- Ryan S Mote
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - ViLinh T Tran
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Douglas I Walker
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Zachary B Turner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Zachary P Sanders
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Le Sciellour M, Zemb O, Hochu I, Riquet J, Gilbert H, Giorgi M, Billon Y, Gourdine JL, Renaudeau D. Effect of chronic and acute heat challenges on fecal microbiota composition, production, and thermoregulation traits in growing pigs1,2. J Anim Sci 2019; 97:3845-3858. [PMID: 31268142 PMCID: PMC6735821 DOI: 10.1093/jas/skz222] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed at investigating the impact of heat challenges on gut microbiota composition in growing pigs and its relationship with pigs’ performance and thermoregulation responses. From a total of 10 F1 sire families, 558 and 564 backcross Large White × Créole pigs were raised and phenotyped from 11 to 23 wk of age in temperate (TEMP) and in tropical (TROP) climates, respectively. In TEMP, all pigs were subjected to an acute heat challenge (3 wk at 29 °C) from 23 to 26 wk of age. Feces samples were collected at 23 wk of age both in TEMP and TROP climate (TEMP23 and TROP23 samples, respectively) and at 26 wk of age in TEMP climate (TEMP26 samples) for 16S rRNA analyses of fecal microbiota composition. The fecal microbiota composition significantly differed between the 3 environments. Using a generalized linear model on microbiota composition, 182 operational taxonomic units (OTU) and 2 pathways were differentially abundant between TEMP23 and TEMP26, and 1,296 OTU and 20 pathways between TEMP23 and TROP23. Using fecal samples collected at 23 wk of age, pigs raised under the 2 climates were discriminated with 36 OTU using a sparse partial least square discriminant analysis that had a mean classification error-rate of 1.7%. In contrast, pigs in TEMP before the acute heat challenge could be discriminated from the pigs in TEMP after the heat challenge with 32 OTU and 9.3% error rate. The microbiota can be used as biomarker of heat stress exposition. Microbiota composition revealed that pigs were separated into 2 enterotypes. The enterotypes were represented in both climates. Whatever the climate, animals belonging to the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype were 3.3 kg heavier (P < 0.05) at 11 wk of age than those belonging to the Lactobacillus-dominated enterotype. This latter enterotype was related to a 0.3 °C lower skin temperature (P < 0.05) at 23 wk of age. Following the acute heat challenge in TEMP, this enterotype had a less-stable rectal temperature (0.34 vs. 0.25 °C variation between weeks 23 and 24, P < 0.05) without affecting growth performance (P > 0.05). Instability of the enterotypes was observed in 34% of the pigs, switching from an enterotype to another between 23 and 26 wk of age after heat stress. Despite a lower microbial diversity, the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype was better adapted to heat stress conditions with lower thermoregulation variations.
Collapse
Affiliation(s)
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Isabelle Hochu
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | | | | | | | | |
Collapse
|
4
|
Welch KD, Pfister JA, Cook D, Carriao Dos Santos F, Lee ST. Assessment of endophyte-derived tremorgenic compounds in Ipomoea asarifolia using mouse models. Toxicon 2018; 156:52-60. [PMID: 30439441 DOI: 10.1016/j.toxicon.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Ipomoea asarifolia has been associated with a tremorgenic syndrome in livestock. Recently indole diterpene compounds were identified in I. asarifolia, some of which have been shown to cause a tremorgenic syndrome. In this study, the tremorgenic nature of I. asarifolia was assessed using a mouse model. Adult mice were fed rodent chow containing 10, 15, 20 and 25% endophyte infected (E+), or 25% endophyte free (E-), I. asarifolia for 14 days. The mice fed E+ chow developed a tremorgenic syndrome as characterized by visually observed muscle tremors and an inability to traverse a balance beam, whereas the mice fed E- chow did not develop tremors and had similar muscle coordination to control mice. A lactating mouse model was also used to determine if the compounds can be transferred to nursing pups via the milk. Nursing pups were exposed via their mother's milk for 21 days, from post-natal day 0-21. The pups from dams exposed to E+ chow developed a similar tremorgenic syndrome. Data presented in this study demonstrate that the tremorgenic compounds in I. asarifolia are endophyte derived. Additionally, both adult mice and nursing pups are good models for studying the tremorgenic nature of I. asarifolia and related plants.
Collapse
Affiliation(s)
- K D Welch
- USDA-ARS Poisonous Plant Research Laboratory, Logan, 84341, UT, USA.
| | - J A Pfister
- USDA-ARS Poisonous Plant Research Laboratory, Logan, 84341, UT, USA
| | - D Cook
- USDA-ARS Poisonous Plant Research Laboratory, Logan, 84341, UT, USA
| | | | - S T Lee
- USDA-ARS Poisonous Plant Research Laboratory, Logan, 84341, UT, USA
| |
Collapse
|
5
|
Flees J, Rajaei-Sharifabadi H, Greene E, Beer L, Hargis BM, Ellestad L, Porter T, Donoghue A, Bottje WG, Dridi S. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front Physiol 2017; 8:919. [PMID: 29230177 PMCID: PMC5711822 DOI: 10.3389/fphys.2017.00919] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M Hargis
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Laura Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Annie Donoghue
- USDA, Agricultural Research Service, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Zbib N, Repussard C, Tardieu D, Priymenko N, Domange C, Guerre P. Toxicity of endophyte-infected ryegrass hay containing high ergovaline level in lactating ewes. J Anim Sci 2016; 93:4098-109. [PMID: 26440189 DOI: 10.2527/jas.2014-8848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The symbiotic association of var. (formerly named ) with perennial ryegrass () leads to the production of ergovaline (EV) and lolitrem B (LB) that are toxic for livestock. The objectives of this study were to determine the effects of feeding endophyte-infected ryegrass (SE+) hay on 16 lactating ewes (BW 80 ± 10 kg) in comparison with endophyte-free ryegrass (SE-) hay to investigate the putative mechanisms of action of EV and LB and to evaluate their persistence in milk and animal tissues. The mean EV and LB concentrations in SE+ hay were 851 and 884 μg/kg DM, respectively, whereas these alkaloids were below the limit of detection in SE- hay. No effect of SE+ was observed on animal health and skin temperature whereas prolactin decreased and significant differences between hays were observed from d 7 to 28 of the study ( < 0.03) but had no effect on milk production. Hematocrit and biochemical analyses of plasma revealed no significant difference between SE+ and SE-, whereas cortisol concentration differed significantly on d 28 ( = 0.001). Measurement of oxidative damage and antioxidant enzyme activities in plasma, liver, and kidneys revealed a slight increase in some enzyme activities involved in defense against oxidative damage in the SE+ fed ewes. Slight variations in the activities of hepatic and kidney flavin monooxygenase enzymes were observed, whereas in the kidney, glutathione -transferase activity decreased significantly ( = 0.002) in the SE+ fed ewes, whereas uridine diphosphate glucuronosyltransferase activity increased ( = 0.001). After 28 d of exposure of ewes to the SE+ hay, low EV and LB concentrations were measured in tissues. The highest concentration of EV was observed in the liver (0.68 μg/kg) whereas fat contained the highest concentration of LB (2.39 μg/kg). Both toxins were also identified at the trace level in milk.
Collapse
|
7
|
Pratt SL, Andrae JG. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Does tall fescue toxicosis negatively impact bull growth and breeding potential? J Anim Sci 2015; 93:5522-8. [PMID: 26641162 DOI: 10.2527/jas.2015-9216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The predominant cool-season forage in the southeastern United States is the tall fescue cultivar Kentucky 31 (KY31). Kentucky 31 possesses an endophyte (), which produces a family of toxins called ergot alkaloids. These toxins negatively affect the physiology of animals on consumption and result in the syndrome known as fescue toxicosis. Currently, the United States annually produces approximately 11.4 billion kg of beef, of which 25% originates in the southeastern region of the United States where forage systems frequently are tall fescue based. Cattle within this forage system exhibit reduced gains and reproductive performance. The result is a reduction in the nation's beef supply with annual revenue losses recently estimated at approximately US$1 billion. Our hypothesis is that exposure to these ergot alkaloids in conjunction with limited availability of nutrients decreases bull semen quality and fertility. Although the literature is clear that these toxins affect BW, body temperature, blood flow, hair growth, and female reproduction in cattle, their effect on bull reproduction and the mechanisms through which the toxins act are not well defined. Six studies published from 2004 to 2015 assessed bull growth, body composition, and semen quality of young beef bulls exposed to ergot alkaloids. If semen quality or fertility is altered, the mechanisms involved may be either direct effects of ergot alkaloids through neurotransmitter receptors or indirect effects such as inhibiting the release of prolactin (PRL). The possible effects of ergot alkaloids or PRL require establishing the presence or absence of dopamine, adrenergic, serotonin, or PRL receptors in the testis, epididymis, and sperm cell of the bull. The objective of this review is to relate our findings to the few previous studies conducted that evaluated the impact of fescue toxicosis on bull reproduction and to propose possible mechanisms of action for lowered semen quality.
Collapse
|
8
|
Guerre P. Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins (Basel) 2015; 7:773-90. [PMID: 25756954 PMCID: PMC4379524 DOI: 10.3390/toxins7030773] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 01/23/2023] Open
Abstract
The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for "fescue toxicosis" in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for "ryegrass staggers". In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the "sleepy grass" and "drunken horse grass" diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity.
Collapse
Affiliation(s)
- Philippe Guerre
- Département des Sciences Biologiques et Fonctionnelles, Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| |
Collapse
|
9
|
Moore BD, Wiggins NL, Marsh KJ, Dearing MD, Foley WJ. Translating physiological signals to changes in feeding behaviour in mammals and the future effects of global climate change. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mammals cannot avoid ingesting secondary metabolites, often in significant amounts. Thus, their intake must be regulated to avoid intoxication. Three broad mechanisms have been described by which this can be achieved. These are conditioned aversions mediated by nausea, non-conditioned aversions and the recognition of limits to detoxification. Although there is some overlap between these, we know little about the way that mechanisms of toxin avoidance interact with regulation of nutrient intake and whether one has priority over the other. Nonetheless, regulation of meal length and inter-meal length allows the intake of some plant secondary metabolites to be matched with an animal’s capacity for detoxification and its nutritional requirements. Toxicity itself is not a fixed limitation and recent work suggests that ambient temperature can be a major determinant of the toxicity of plant secondary metabolites, largely through effects on liver function. These effects are likely to be of major importance in predicting the impact of global climate change on herbivores.
Collapse
|
10
|
Zbib N, Repussard C, Tardieu D, Priymenko N, Domange C, Guerre P. Ergovaline in tall fescue and its effect on health, milk quality, biochemical parameters, oxidative status, and drug metabolizing enzymes of lactating ewes. J Anim Sci 2014; 92:5112-23. [PMID: 25253811 DOI: 10.2527/jas.2014-8106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ergovaline (EV) produced by symbiotic association of Epichloë coenophiala with tall fescue (Lolium arundinaceum) causes toxicoses in livestock. In this study, 16 lactating ewes (BW 76.0 ± 0.6 kg) were used to determine the effects of feeding endophyte-infected (FE+) or endophyte free (FE-) tall fescue hay on animal health and performances and to investigate the putative mechanisms of action of EV. The mean EV concentrations in FE+ and FE- diets were 497 ± 52 and <5 µg/kg DM, respectively. Decreased hay consumption and BW were observed in the FE+ group. Prolactin (PRL) concentrations decreased (P < 0.02) in the FE+ group from d 3 to 28 of the study compared to the FE- group, but no consequences were observed on milk quantity or quality. Skin temperature and the thermocirculation index were lower (P < 0.05) in the FE+ than in the FE- group from d 3 to 7, but this effect disappeared from d 14 to 28. Hematocrit, mineral and biochemical, and enzymatic analyses of plasma revealed no differences between the 2 groups. Measurement of oxidative damage and antioxidant enzyme activities revealed a decrease in the activities of plasma catalase (P < 0.05), kidney glutathione reductase and peroxidase and in kidney total glutathione and malondialdehyde contents (P < 0.02) in ewes fed FE+. Hepatic flavin monooxygenase enzyme activities decreased (P < 0.01) in ewes fed FE+, except for a marked increase in the demethylation of erythromycin. This activity is linked to cytochrome P4503A content and is known to be involved in ergot alkaloid metabolism. Glutathione S-transferase activity in the kidneys decreased (P < 0.02) in the FE+ group, whereas no difference was observed in uridine diphosphate-glucuronosyltransferase activity in the liver or kidneys. The reversibility of the effect of FE+ hay on skin temperature and the increase in erythromycin N-demethylase activity may contribute to the relative resistance of ewes to EV toxicity.
Collapse
Affiliation(s)
- N Zbib
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France
| | - C Repussard
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France
| | - D Tardieu
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France
| | - N Priymenko
- Université de Toulouse, INP, ENVT, INRA UMR1331 Toxalim, F-31076 Toulouse France
| | - C Domange
- Université de Toulouse, INP, ENVT, INRA UMR1331 Toxalim, F-31076 Toulouse France
| | - P Guerre
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France
| |
Collapse
|
11
|
Kessler KL, Olson KC, Wright CL, Austin KJ, McInnerney K, Johnson PS, Cockrum RR, Jons AM, Cammack KM. Effects of high-sulphur water on hepatic gene expression of steers fed fibre-based diets. J Anim Physiol Anim Nutr (Berl) 2012; 97:838-45. [PMID: 22853431 DOI: 10.1111/j.1439-0396.2012.01327.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulphur-induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is frequently associated with the consumption of high-sulphur (S) water and subsequent poor performance. Currently, there is no economical method for S removal from surface water sources, and alternative water sources are typically neither readily available nor cost-effective. Determination of genes differentially expressed in response to high-S water consumption may provide a better understanding of the physiology corresponding to high dietary S and ultimately lead to the development of treatment and prevention strategies. The objective of this study was to determine changes in gene expression in the liver, an organ important for S metabolism, of fibre-fed steers consuming high-S water. For this study, liver tissues were collected on the final day of a trial from yearling steers randomly assigned to low-S water control (566 mg/kg SO4 ; n = 24), high-S water (3651 mg/kg SO4 ; n = 24) or high-S water plus clinoptilolite supplemented at either 2.5% (n = 24) or 5.0% (n = 24) of diet dry matter (DM). Microarray analyses on randomly selected healthy low-S control (n = 4) and high-S (n = 4; no clinoptilolite) steers using the Affymetrix GeneChip Bovine Genome Array revealed 488 genes upregulated (p < 0.05) and 154 genes downregulated (p < 0.05) in response to the high- vs. low-S water consumption. Real-time RT-PCR confirmed the upregulation (p < 0.10) of seven genes involved in inflammatory response and immune functions. Changes in such genes suggest that ruminant animals administered high-S water may be undergoing an inflammation or immune response, even if signs of sPEM or compromised health are not readily observed. Further study of these, and other affected genes, may deliver new insights into the physiology underlying the response to high dietary S, ultimately leading to the development of treatments for high S-affected ruminant livestock.
Collapse
Affiliation(s)
- K L Kessler
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - K C Olson
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - C L Wright
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - K J Austin
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - K McInnerney
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - P S Johnson
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - R R Cockrum
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - A M Jons
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| | - K M Cammack
- Department of Animal Science, University of Wyoming, Laramie, WY, USA Department of Animal and Range Sciences, South Dakota State University, Brookings, SD, USA Functional Genomics Core Facility, Montana State University, Bozeman, MT, USA
| |
Collapse
|
12
|
Fayrer-Hosken R, Stanley A, Hill N, Heusner G, Christian M, De La Fuente R, Baumann C, Jones L. Effect of feeding fescue seed containing ergot alkaloid toxins on stallion spermatogenesis and sperm cells. Reprod Domest Anim 2012; 47:1017-26. [PMID: 22524585 DOI: 10.1111/j.1439-0531.2012.02008.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular effects of tall fescue grass-associated toxic ergot alkaloids on stallion sperm and colt testicular tissue were evaluated. This was a continuation of an initial experiment where the effects of toxic ergot alkaloids on the stallion spermiogram were investigated. The only spermiogram parameter in exposed stallions that was affected by the toxic ergot alkaloids was a decreased gel-free volume of the ejaculate. This study examined the effect of toxic ergot alkaloids on chilling and freezing of the stallion sperm cells. The effect of toxic ergot alkaloids on chilled extended sperm cells for 48 h at 5°C was to make the sperm cells less likely to undergo a calcium ionophore-induced acrosome reaction. The toxic ergot alkaloids had no effect on the freezability of sperm cells. However, if yearling colts were fed toxic ergot alkaloids, then the cytological analysis of meiotic chromosome synapsis revealed a significant increase in the proportion of pachytene spermatocytes showing unpaired sex chromosomes compared to control spermatocytes. There was little effect of ergot alkaloids on adult stallions, but there might be a significant effect on yearling colts.
Collapse
Affiliation(s)
- R Fayrer-Hosken
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Breton AB, Austin KJ, Leedy MG, Alexander BM. Effects of progesterone and RU486 on the development and expression of adult male sexual behaviour and gene expression in the amygdala and preoptic area of the hypothalamus. Reprod Fertil Dev 2012; 24:916-22. [DOI: 10.1071/rd12006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
The number of progesterone receptors is greater in the male than female neonatal rat hypothalamus. The aims of the present study were to determine developmental effects of progesterone on the expression of adult male sexual behaviour and whether changes in behaviour were reflected by altered gene expression within the hypothalamic preoptic area (POA) or medial amygdala. Male rats were treated with progesterone (40 µg kg–1, i.p.), the progesterone receptor antagonist RU486 (40 µg kg–1, i.p.) or an equal volume of vehicle (10% ethanol, 90% corn oil) on postnatal Days 1–5. Treatment with either progesterone or RU486 inhibited (P ≤ 0.07) the initial expression of consummatory sexual behaviour at 10.5 weeks of age without influencing growth or serum concentrations of testosterone. Sexual interest, as measured by latency to exhibiting mounting behaviour or the number of mounts achieved, was not influenced by treatment with either progesterone or RU486. The effects of treatment with progesterone or RU486 on sexual behaviour were diminished by experience. Microarray analysis of the POA indicated 61 genes that were upregulated and 49 that were downregulated (P ≤ 0.01) following RU486 treatment of male rats. However, the altered expression of selected genes was not confirmed by real-time reverse transcription–polymerase chain reaction. The expression of targeted genes within the amygdala was not influenced by treatment with either progesterone or RU486. Neonatal treatment with RU486, but not progesterone, decreased testes weight (P = 0.02) without affecting testes morphology. The results indicate that altering the progesterone environment during a critical developmental period affects the expression of behaviour, but that changes in behaviour are not mirrored by the altered expression of selected genes.
Collapse
|
14
|
Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals. Appl Environ Microbiol 2010; 76:2823-9. [PMID: 20228102 DOI: 10.1128/aem.02984-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.
Collapse
|
15
|
Cammack K, Antoniou E, Hearne L, Lamberson W. Testicular gene expression in male mice divergent for fertility after heat stress. Theriogenology 2009; 71:651-61. [DOI: 10.1016/j.theriogenology.2008.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 08/28/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
|