1
|
Teer L, Yaddanapudi K, Chen J. Biophysical Control of the Glioblastoma Immunosuppressive Microenvironment: Opportunities for Immunotherapy. Bioengineering (Basel) 2024; 11:93. [PMID: 38247970 PMCID: PMC10813491 DOI: 10.3390/bioengineering11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
GBM is the most aggressive and common form of primary brain cancer with a dismal prognosis. Current GBM treatments have not improved patient survival, due to the propensity for tumor cell adaptation and immune evasion, leading to a persistent progression of the disease. In recent years, the tumor microenvironment (TME) has been identified as a critical regulator of these pro-tumorigenic changes, providing a complex array of biomolecular and biophysical signals that facilitate evasion strategies by modulating tumor cells, stromal cells, and immune populations. Efforts to unravel these complex TME interactions are necessary to improve GBM therapy. Immunotherapy is a promising treatment strategy that utilizes a patient's own immune system for tumor eradication and has exhibited exciting results in many cancer types; however, the highly immunosuppressive interactions between the immune cell populations and the GBM TME continue to present challenges. In order to elucidate these interactions, novel bioengineering models are being employed to decipher the mechanisms of immunologically "cold" GBMs. Additionally, these data are being leveraged to develop cell engineering strategies to bolster immunotherapy efficacy. This review presents an in-depth analysis of the biophysical interactions of the GBM TME and immune cell populations as well as the systems used to elucidate the underlying immunosuppressive mechanisms for improving current therapies.
Collapse
Affiliation(s)
- Landon Teer
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Joseph Chen
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
2
|
Maas SLN, Abels ER, Van De Haar LL, Zhang X, Morsett L, Sil S, Guedes J, Sen P, Prabhakar S, Hickman SE, Lai CP, Ting DT, Breakefield XO, Broekman MLD, El Khoury J. Glioblastoma hijacks microglial gene expression to support tumor growth. J Neuroinflammation 2020; 17:120. [PMID: 32299465 PMCID: PMC7164149 DOI: 10.1186/s12974-020-01797-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastomas are the most common and lethal primary brain tumors. Microglia, the resident immune cells of the brain, survey their environment and respond to pathogens, toxins, and tumors. Glioblastoma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Despite the presence of large numbers of microglia in glioblastoma, the tumors continue to grow, and these neuroimmune cells appear incapable of keeping the tumor in check. To understand this process, we analyzed gene expression in microglia interacting with glioblastoma cells. METHODS We used RNASeq of isolated microglia to analyze the expression patterns of genes involved in key microglial functions in mice with glioblastoma. We focused on microglia that had taken up tumor-derived EVs and therefore were within and immediately adjacent to the tumor. RESULTS We show that these microglia have downregulated expression of genes involved in sensing tumor cells and tumor-derived danger signals, as well as genes used for tumor killing. In contrast, expression of genes involved in facilitating tumor spread was upregulated. These changes appear to be in part EV-mediated, since intracranial injection of EVs in normal mice led to similar transcriptional changes in microglia. We observed a similar microglial transcriptomic signature when we analyzed datasets from human patients with glioblastoma. CONCLUSION Our data define a microgliaGlioblastoma specific phenotype, whereby glioblastomas have hijacked gene expression in the neuroimmune system to favor avoiding tumor sensing, suppressing the immune response, clearing a path for invasion, and enhancing tumor propagation. For further exploration, we developed an interactive online tool at http://www.glioma-microglia.com with all expression data and additional functional and pathway information for each gene.
Collapse
Affiliation(s)
- Sybren L N Maas
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Department of Neurosurgery, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Lieke L Van De Haar
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Xuan Zhang
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Liza Morsett
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Srinjoy Sil
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Joana Guedes
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Pritha Sen
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Shilpa Prabhakar
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Suzanne E Hickman
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Charles P Lai
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Institute of Atomic and Molecular Sciences/Academia Sinica, 10617, Taipei, Taiwan
| | - David T Ting
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Department of Neurosurgery, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, 2512 VA, The Hague, The Netherlands
| | - Joseph El Khoury
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
3
|
Zinnhardt B, Pigeon H, Thézé B, Viel T, Wachsmuth L, Fricke IB, Schelhaas S, Honold L, Schwegmann K, Wagner S, Faust A, Faber C, Kuhlmann MT, Hermann S, Schäfers M, Winkeler A, Jacobs AH. Combined PET Imaging of the Inflammatory Tumor Microenvironment Identifies Margins of Unique Radiotracer Uptake. Cancer Res 2017; 77:1831-1841. [PMID: 28137769 DOI: 10.1158/0008-5472.can-16-2628] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment is highly heterogeneous. For gliomas, the tumor-associated inflammatory response is pivotal to support growth and invasion. Factors of glioma growth, inflammation, and invasion, such as the translocator protein (TSPO) and matrix metalloproteinases (MMP), may serve as specific imaging biomarkers of the glioma microenvironment. In this study, noninvasive imaging by PET with [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) was used for the assessment of localization and quantification of the expression of TSPO and MMP. Imaging was performed in addition to established clinical imaging biomarker of active tumor volume ([18F]FET) in conjunction with MRI. We hypothesized that each imaging biomarker revealed distinct areas of the heterogeneous glioma tissue in a mouse model of human glioma. Tracers were found to be increased 1.4- to 1.7-fold, with [18F]FET showing the biggest volume as depicted by a thresholding-based, volumes of interest analysis. Tumor areas, which could not be detected by a single tracer and/or MRI parameter alone, were measured. Specific compartments of [18F]DPA-714 (14%) and [18F]BR-351 (11%) volumes along the tumor rim could be identified. [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) matched with histology. Glioma-associated microglia/macrophages (GAM) were identified as TSPO and MMP sources. Multitracer and multimodal molecular imaging approaches may allow us to gain important insights into glioma-associated inflammation (GAM, MMP). Moreover, this noninvasive technique enables characterization of the glioma microenvironment with respect to the disease-driving cellular compartments at the various disease stages. Cancer Res; 77(8); 1831-41. ©2017 AACR.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany.
| | - Hayet Pigeon
- Imagerie Moléculaire In Vivo, Inserm, CEA, Univ. Paris Sud, CNRS, Université Paris Saclay, CEA - Service Hospitalier Frédéric Joliot, Orsay, France
| | - Benoit Thézé
- Imagerie Moléculaire In Vivo, Inserm, CEA, Univ. Paris Sud, CNRS, Université Paris Saclay, CEA - Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany.,PARCC INSERM-U970, Université Paris Descartes, Paris, France
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Inga B Fricke
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany
| | - Lisa Honold
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany
| | - Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Münster, Münster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Münster, Münster, Germany
| | - Alexandra Winkeler
- Imagerie Moléculaire In Vivo, Inserm, CEA, Univ. Paris Sud, CNRS, Université Paris Saclay, CEA - Service Hospitalier Frédéric Joliot, Orsay, France
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Münster, Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
4
|
Wang Y, Liu T, Yang N, Xu S, Li X, Wang D. Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep 2016; 36:3522-3528. [DOI: 10.3892/or.2016.5171] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
|
5
|
Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S, Li G. Immune Evasion Strategies of Glioblastoma. Front Surg 2016; 3:11. [PMID: 26973839 PMCID: PMC4773586 DOI: 10.3389/fsurg.2016.00011] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM.
Collapse
Affiliation(s)
- Seyed-Mostafa Razavi
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Karen E Lee
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Benjamin E Jin
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Parvir S Aujla
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| | - Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
6
|
Button EB, Mitchell AS, Domingos MM, Chung JHJ, Bradley RM, Hashemi A, Marvyn PM, Patterson AC, Stark KD, Quadrilatero J, Duncan RE. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids 2014; 49:305-16. [PMID: 24473753 DOI: 10.1007/s11745-014-3882-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is a component of age-related neurodegenerative diseases and cognitive decline. Saturated (SFA) and monounsaturated (MUFA) fatty acids are bioactive molecules that may play different extrinsic and intrinsic roles in neuroinflammation, serving as exogenous ligands for cellular receptors, or endogenous components of cell structural, energetic and signaling pathways. We determined the fatty acyl profile of BV2 microglial cells before and after acute activation with lipopolysaccharide (LPS). We also investigated the effect of SFA and MUFA pretreatment on the production of an invasive, neurotoxic phenotype in BV2 cells. Acute activation of BV2 microglia resulted in an increase in the relative content of SFA (12:0, 16:0, 18:0, 20:0, 22:0, and 24:0 increased significantly), and a relative decrease in the content of MUFA (16:1n7, 18:1n7, 18:1n9, 20:1n9, 24:1n9 decreased significantly). In agreement, the major stearoyl-CoA desaturase (SCD) isoform in BV2 cells, SCD2, was significantly down-regulated by LPS. We next treated cells with SFA (16:0 or 18:0) or MUFA (16:1n7 or 18:1n9), and found that levels of secreted IL6 were increased, as was secreted MMP9-mediated proteolytic activity. To test the functional significance, we treated SH-SY5Y neuronal cells with conditioned medium from BV2 cells pretreated with fatty acids, and found a small but significant induction of cell death. Our findings suggest differential intrinsic roles for SFA and MUFA in activated microglial cells, but similar extrinsic roles for these fatty acid species in inducing activation. Expansion of SFA is important during microglial cell activation, but either supplemental SFA or MUFA may contribute to chronic low-grade neuroinflammation.
Collapse
Affiliation(s)
- Emily B Button
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Coniglio SJ, Segall JE. Review: molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol 2013; 32:372-80. [PMID: 23933178 DOI: 10.1016/j.matbio.2013.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/28/2013] [Accepted: 07/28/2013] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme is one of the deadliest human cancers and is characterized by a high degree of microglia and macrophage infiltration. The role of these glioma infiltrating macrophages (GIMs) in disease progression has been the subject of recent investigation. While initially thought to reflect an immune response to the tumor, the balance of evidence clearly suggests GIMs can have potent tumor-tropic functions and assist in glioma cell growth and infiltration into normal brain. In this review, we focus on the evidence for GIMs aiding mediating glioblastoma motility and invasion. We survey the literature for molecular pathways that are involved in paracrine interaction between glioma cells and GIMs and assess which of these might serve as attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Salvatore J Coniglio
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, Bronx, NY 10461, United States.
| | | |
Collapse
|
8
|
Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013; 2013:264124. [PMID: 23864876 PMCID: PMC3707269 DOI: 10.1155/2013/264124] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/03/2013] [Indexed: 01/05/2023]
Abstract
Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies.
Collapse
|
9
|
Li Z, Du L, Li C, Wu W. Human chorionic gonadotropin β induces cell motility via ERK1/2 and MMP-2 activation in human glioblastoma U87MG cells. J Neurooncol 2012; 111:237-44. [PMID: 23232806 DOI: 10.1007/s11060-012-1017-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/03/2012] [Indexed: 11/25/2022]
Abstract
Human chorionic gonadotropin β (hCGβ) promotes tumorigenesis in a variety of tumors including glioblastoma, breast and prostate cancer cells, etc. However, the involved mechanisms remain elusive. Distinct from the other tumors, glioblastoma is a highly invasive brain tumor; invasion causes high recurrence and mortality. Characterization of hCGβ signaling is to determine therapeutic targets to inhibit invasion and lower recurrence. Through both a stable cell line over-expressing hCGβ and hCGβ standards, we tested hCGβ signaling, migration and invasion in human glioblastoma U87MG cells. ELISA showed that hCGβ secreted into culture medium at an amount of 237.8 ± 7.8 ng/10(7) cells in hCGβ transfected stable cells after the cells were grown for 24 h. Through Western blot and Gelatin zymography, we found that hCGβ standards phosphorylated ERK1/2 and upregulated MMP-2 expression in dose- and time-dependent manners. Meanwhile, overexpressed hCGβ phosphorylated ERK1/2, and upregulated MMP-2 expression and activity, whereas ERK1/2 blocker PD98059 (25 μM) significantly decreased both ERK1/2 and MMP-2 expression and activity. In addition, in the same conditions as the signaling test, hCGβ promoted cell migration and invasion, whereas the PD98059 diminished these effects. These findings demonstrated that hCGβ phosphorylated ERK1/2 upregulating MMP-2 expression and activity leading to cell migration and invasion, suggesting that hCGβ, ERK1/2 and MMP-2 are the potential targets to inhibit glioblastoma invasion.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/physiology
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Chorionic Gonadotropin, beta Subunit, Human/pharmacology
- Dose-Response Relationship, Drug
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Glioblastoma/pathology
- Humans
- Matrix Metalloproteinase 2/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Transfection
Collapse
Affiliation(s)
- Zongwen Li
- Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University, Beijing 100069, China
| | | | | | | |
Collapse
|
10
|
Sahu SC, O'Donnell MW, Sprando RL. Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells. J Appl Toxicol 2012; 32:739-49. [PMID: 22777745 DOI: 10.1002/jat.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/09/2022]
Abstract
Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non-toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37°C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared with the controls, low non-toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
11
|
Mentlein R, Hattermann K, Held-Feindt J. Lost in disruption: Role of proteases in glioma invasion and progression. Biochim Biophys Acta Rev Cancer 2012; 1825:178-85. [DOI: 10.1016/j.bbcan.2011.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/12/2022]
|
12
|
Sahu SC, Amankwa-Sakyi M, O'Donnell MW, Sprando RL. Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture. J Appl Toxicol 2011; 32:722-30. [DOI: 10.1002/jat.1721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Margaret Amankwa-Sakyi
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Michael W. O'Donnell
- Division of Public Health and Biostatistics; Office of Food Defense; Communication and Emergency Response; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| | - Robert L. Sprando
- Division of Toxicology; Office of Applied Research and Safety Assessment; Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel; MD; 20708; USA
| |
Collapse
|
13
|
Fu Y, Zheng S, Huang R, An N, Zheng Y, Zhang Z, Liang A. A potential strategy for high-grade gliomas: combination treatment with lithium chloride and BmK CT. Biotechnol Lett 2011; 34:9-17. [DOI: 10.1007/s10529-011-0741-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/24/2011] [Indexed: 12/26/2022]
|
14
|
Mei C, Sun L, Liu Y, Yang Y, Cai X, Liu M, Yao W, Wang C, Li X, Wang L, Li Z, Shi Y, Qiu S, Fan J, Zha X. Transcriptional and post-transcriptional control of DNA methyltransferase 3B is regulated by phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell lines. J Cell Biochem 2010; 111:158-67. [PMID: 20506537 DOI: 10.1002/jcb.22684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
DNA methyltransferases (DNMTs) are essential for maintenance of aberrant methylation in cancer cells and play important roles in the development of cancers. Unregulated activation of PI3K/Akt pathway is a prominent feature of many human cancers including human hepatocellular carcinoma (HCC). In present study, we found that DNMT3B mRNA and protein levels were decreased in a dose- and time-dependent manner in HCC cell lines with LY294002 treatment. However, we detected that LY294002 treatment did not induce increase of the degradation of DNMT3B protein using protein decay assay. Moreover we found that Akt induced alteration of the expression of DNMT3B in cells transfected with myristylated variants of Akt2 or cells transfected with small interfering RNA respectively. Based on DNMT3B promoter dual-luciferase reporter assay, we found PI3K pathway regulates DNMT3B expression at transcriptional level. And DNMT3B mRNA decay analysis suggested that down-regulation of DNMT3B by LY294002 is also post-transcriptional control. Furthermore, we demonstrated that LY294002 down-regulated HuR expression in a time-dependent manner in BEL-7404. In summary, we have, for the first time, demonstrate that PI3K/Akt pathway regulates the expression of DNMT3B at transcriptional and post-transcriptional levels, which is particularly important to understand the effects of PI3K/Akt and DNMT3B on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chuanzhong Mei
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|