1
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
2
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 PMCID: PMC8728880 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
McMichael BD, Perego MC, Darling CL, Perry RL, Coleman SC, Bain LJ. Long-term arsenic exposure impairs differentiation in mouse embryonal stem cells. J Appl Toxicol 2020; 41:1089-1102. [PMID: 33124703 DOI: 10.1002/jat.4095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/12/2022]
Abstract
Arsenic is a contaminant found in many foods and drinking water. Exposure to arsenic during development can cause improper neuronal progenitor cell development, differentiation, and function, while in vitro studies have determined that acute arsenic exposure to stem and progenitor cells reduced their ability to differentiate. In the current study, P19 mouse embryonal stem cells were exposed continuously to 0.1-μM (7.5 ppb) arsenic for 32 weeks. A cell lineage array examining messenger RNA (mRNA) changes after 8 and 32 weeks of exposure showed that genes involved in pluripotency were increased, whereas those involved in differentiation were reduced. Therefore, temporal changes of select pluripotency and neuronal differentiation markers throughout the 32-week chronic arsenic exposure were investigated. Sox2 and Oct4 mRNA expression were increased by 1.9- to 2.5-fold in the arsenic-exposed cells, beginning at Week 12. Sox2 protein expression was similarly increased starting at Week 16 and remained elevated by 1.5-fold to sixfold. One target of Sox2 is N-cadherin, whose expression is a hallmark of epithelial-mesenchymal transitions (EMTs). Exposure to arsenic significantly increased N-cadherin protein levels beginning at Week 20, concurrent with increased grouping of N-cadherin positive cells at the perimeter of the embryoid body. Expression of Zeb1, which helps increase the expression of Sox2, was also increased started at Week 16. In contrast, Gdf3 mRNA expression was reduced by 3.4- to 7.2-fold beginning at Week 16, and expression of its target protein, phospho-Smad2/3, was also reduced. These results suggest that chronic, low-level arsenic exposure may delay neuronal differentiation and maintain pluripotency.
Collapse
Affiliation(s)
- Benjamin D McMichael
- Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, USA.,US Environmental Protection Agency, Durham, North Carolina, USA
| | - M Chiara Perego
- Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, USA
| | - Caitlin L Darling
- Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, USA
| | - Rebekah L Perry
- Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, USA
| | - Sarah C Coleman
- Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, USA
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, USA.,Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
5
|
Bhattacharjee P, Sanyal T, Bhattacharjee S, Bhattacharjee P. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. ENVIRONMENTAL RESEARCH 2018; 163:289-296. [PMID: 29499398 DOI: 10.1016/j.envres.2018.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Arsenic exposure and its adverse health outcome, including the association with cancer risk are well established from several studies across the globe. The present study aims to analyze the epigenetic regulation of key mismatch repair (MMR) genes in the arsenic-exposed population. METHOD A case-control study was conducted involving two hundred twenty four (N=224) arsenic exposed [with skin lesion (WSL=110) and without skin lesion (WOSL=114)] and one hundred and two (N=102) unexposed individuals. The methylation status of key MMR genes i.e. MLH1, MSH2, and PMS2 were analyzed using methylation-specific PCR (MSP). The gene expression was studied by qRTPCR. The expression of H3K36me3, which was earlier reported to be an important regulator of MMR pathway, was assessed using ELISA. RESULTS Arsenic-exposed individuals showed significant promoter hypermethylation (p < 0.0001) of MLH1 and MSH2 compared to those unexposed with consequent down-regulation in their gene expression [MLH1 (p=0.001) and MSH2 (p<0.05)]. However, no significant association was found in expression and methylation of PMS2 with arsenic exposure. We found significant down-regulation of H3K36me3 in the arsenic-exposed group, most significantly in the WSL group (p<0.0001). The expression of SETD2, the methyltransferase of an H3K36me3 moiety was found to be unaltered in arsenic exposure, suggesting the involvement of other regulatory factors yet to be identified. DISCUSSION In summary, the epigenetic repression of DNA damage repair genes due to promoter hypermethylation of MLH1 and MSH2 and inefficient recruitment of MMR complex at the site of DNA damage owing to the reduced level of H3K36me3 impairs the mismatch repair pathway that might render the arsenic-exposed individuals more susceptible towards DNA damage and associated cancer risk.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | | | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
6
|
Oliva-González C, Uresti-Rivera EE, Galicia-Cruz OG, Jasso-Robles FI, Gandolfi AJ, Escudero-Lourdes C. The tumor suppressor phosphatase and tensin homolog protein (PTEN) is negatively regulated by NF-κb p50 homodimers and involves histone 3 methylation/deacetylation in UROtsa cells chronically exposed to monomethylarsonous acid. Toxicol Lett 2017; 280:92-98. [PMID: 28823542 DOI: 10.1016/j.toxlet.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 01/06/2023]
Abstract
UROtsa cells have been accepted as a model to study carcinogenicity mechanisms of arsenic-associated human bladder cancer. In vitro continuous exposure to monomethylarsonous acid (MMAIII), leads UROtsa cells to commit to malignant transformation. In this process, NF-κβ-associated inflammatory response seems to play an important role since this transcription factor activates some minutes after cells are exposed in vitro to MMAIII and keeps activated during the cellular malignant transformation. It is known that a slight decrease in the protein phosphatase and tensin homologue (PTEN) gene expression is enough for some cells to become malignantly transformed. Interestingly, this tumor suppressor has been proven to be negatively regulated by NF-κβ through binding to its gene promoter. Based on these observations we propose that NF-κβ may be involved in arsenic associated carcinogenesis through the negative regulation of PTEN gene expression. Changes in PTEN expression and the binding of p50 NF-κβ subunit to PTEN promoter were evaluated in UROtsa cells exposed for 4, 12, 20, or 24 wk to 50nM MMAIII. Results showed that MMAIII induced a significant decrease in PTEN expression around 20 wk exposure to MMAIII,which correlated with increased binding of p50 subunit to the PTEN promoter. Consistent with these results, ChIP assays also showed a significant decrease in H3 acetylation (H3ac) but an increase in the repression marks H3k9me3 and H327me3 in PTEN promoter when compared with not treated cells. These results suggest that the activation of NF-κβ by MMAIII may participate in UROtsa cells malignant transformation through the negative regulation of PTEN expression involving p50 homodimers-mediated chromatin remodeling around the PTEN promoter.
Collapse
Affiliation(s)
- C Oliva-González
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - E E Uresti-Rivera
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - O G Galicia-Cruz
- Laboratorio de Fisiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - F I Jasso-Robles
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - A J Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson AZ, USA
| | - C Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
7
|
Chen C, Jiang X, Gu S, Zhang Z. MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells. Toxicol Lett 2017; 278:38-47. [PMID: 28688901 DOI: 10.1016/j.toxlet.2017.07.215] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/01/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Arsenite is a well-documented human lung carcinogen but the detailed mechanisms of carcinogenesis remain unclear. In this study, human bronchial epithelial (16-HBE) cells were continuously exposed to 2.5μM arsenite for about 13 weeks to induce the phenotypes of malignant transformation. Our results showed that Nrf2 expression was gradually decreased whereas no significant change was observed on NF-κB activation with increased time of arsenite exposure. To test the roles of Nrf2-meidtaed oxidative damage in the arsenite-induced malignant transformation, we compared the levels of cGMP, PKG and oxidative damage-related indicators between arsenic-transformed cells and control cells. Our data demonstrated there were no significantly differences on the contents of cGMP, PKG, MDA and the production of ROS, but the levels of GSH and NO, the activities of SOD, tNOS and iNOS were significantly enhanced in the arsenic-transformed cells. Importantly, Nrf2 inactivation could be modulated by miR-155, and inhibition of miR-155 remarkably attenuated the malignant phenotypes and promoted apoptotic cell death in the arsenic-transformed cells. Together, our findings provide the novel mechanism that miR-155 may regulate arsenite-induced cell malignant transformation by targeting Nrf2-mediated oxidative damage, indicating that inhibition of miR-155 may be a potential strategy against lung carcinogenesis of arsenite.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyan Gu
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Zhu J, Wang J, Chen X, Tsompana M, Gaile D, Buck M, Ren X. A time-series analysis of altered histone H3 acetylation and gene expression during the course of MMAIII-induced malignant transformation of urinary bladder cells. Carcinogenesis 2017; 38:378-390. [PMID: 28182198 DOI: 10.1093/carcin/bgx011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
Our previous studies have shown that chronic exposure to low doses of monomethylarsonous acid (MMAIII) causes global histone acetylation dysregulation in urothelial cells (UROtsa cells) during the course of malignant transformation. To reveal the relationship between altered histone acetylation patterns and aberrant gene expression, more specifically, the carcinogenic relevance of these alterations, we performed a time-course analysis of the binding patterns of histone 3 lysine 18 acetylation (H3K18ac) across the genome and generated global gene-expression profiles from this UROtsa cell malignant transformation model. We showed that H3K18ac, one of the most significantly upregulated histone acetylation sites following MMAIII exposure, was enriched at gene promoter-specific regions across the genome and that MMAIII-induced upregulation of H3K18ac led to an altered binding pattern in a large number of genes that was most significant during the critical window for MMAIII-induced UROtsa cells' malignant transformation. Some genes identified as having a differential binding pattern with H3K18ac, acted as upstream regulators of critical gene networks with known functions in tumor development and progression. The altered H3K18ac binding patterns not only led to changes in expression of these directly affected upstream regulators but also resulted in gene-expression changes in their regulated networks. Collectively, our data suggest that MMAIII-induced alteration of histone acetylation patterns in UROtsa cells led to a time- and malignant stage-dependent aberrant gene-expression pattern, and that some gene regulatory networks were altered in accordance with their roles in carcinogenesis, probably contributing to MMAIII-induced urothelial cell malignant transformation and carcinogenesis.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Epidemiology and Environmental Health
| | | | - Xushen Chen
- Department of Epidemiology and Environmental Health
| | | | | | | | - Xuefeng Ren
- Department of Epidemiology and Environmental Health.,Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, Maier RM, Ozonoff DM, Smith MT, Tukey RH. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:909-18. [PMID: 25978799 PMCID: PMC4590764 DOI: 10.1289/ehp.1409247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/12/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. RESULTS SRP has had many successes: discovery of arsenic's toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. CONCLUSION SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world's worst toxic hot spots are now located in low- and middle-income countries.
Collapse
|
10
|
Person RJ, Ngalame NNO, Makia NL, Bell MW, Waalkes MP, Tokar EJ. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells. Toxicol Appl Pharmacol 2015; 286:36-43. [PMID: 25804888 PMCID: PMC4444387 DOI: 10.1016/j.taap.2015.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer.
Collapse
Affiliation(s)
- Rachel J Person
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ntube N Olive Ngalame
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ngome L Makia
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew W Bell
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael P Waalkes
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
11
|
Chen L, Yang J, Zheng M, Kong X, Huang T, Cai YD. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer. PLoS One 2015; 10:e0128696. [PMID: 26047514 PMCID: PMC4457841 DOI: 10.1371/journal.pone.0128696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, 200444, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People’s Republic of China
| | - Jing Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Mingyue Zheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, 201203, People’s Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
- * E-mail: (TH); (YDC)
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, People’s Republic of China
- * E-mail: (TH); (YDC)
| |
Collapse
|
12
|
Huang T, Barnett JV, Camenisch TD. Cardiac epithelial-mesenchymal transition is blocked by monomethylarsonous acid (III). Toxicol Sci 2014; 142:225-38. [PMID: 25145660 DOI: 10.1093/toxsci/kfu170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAs(III)) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Tianfang Huang
- Department of Pharmacology and Toxicology College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Todd D Camenisch
- Department of Pharmacology and Toxicology College of Pharmacy, University of Arizona, Tucson, Arizona 85721 Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721 Steele Children's Research Center, University of Arizona, Tucson, Arizona 85724 Sarver Heart Center Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
13
|
Tokar EJ, Kojima C, Waalkes MP. Methylarsonous acid causes oxidative DNA damage in cells independent of the ability to biomethylate inorganic arsenic. Arch Toxicol 2014; 88:249-61. [PMID: 24091636 PMCID: PMC3946729 DOI: 10.1007/s00204-013-1141-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Inorganic arsenic (iAs) and its toxic methylated metabolite, methylarsonous acid (MMA(III)), both have carcinogenic potential. Prior study shows iAs-induced malignant transformation in both arsenic methylation-proficient (liver) and methylation-deficient (prostate) cells, but only methylation-proficient cells show oxidative DNA damage (ODD) during this transformation. To further define whether arsenic methylation is necessary for transformation or ODD induction, here we chronically exposed these same liver or prostate cell lines to MMA(III) (0.25-1.0 μM) and tested for acquired malignant phenotype. Various metrics of oncogenic transformation were periodically assessed along with ODD during chronic MMA(III) exposure. Methylation-deficient and methylation-proficient cells both acquired a cancer phenotype with MMA(III) exposure at about 20 weeks, based on increased matrix metalloproteinase secretion, colony formation, and invasion. In contrast, prior work showed iAs-induced transformation took longer in biomethylation-deficient cells (~30 weeks) than in biomethylation-proficient cells (~18 weeks). In the present study, MMA(III) caused similar peak ODD levels at similar concentrations and at similar exposure times (18-22 weeks) in both cell types. At the approximate peak of ODD production, both cell types showed similar alterations in arsenic and oxidative stress adaptation factors (i.e., ABCC1, ABCC2, GST-π, SOD-1). Thus, MMA(III) causes oncogenic transformation associated with ODD in methylation-deficient cells, indicating that further methylation is not required to induce ODD. Together, these results show that MMA(III) and iAs cause an acquired malignant phenotype in methylation-deficient cells, yet iAs does not induce ODD. This indicates iAs likely has both genotoxic and non-genotoxic mechanisms dictated by the target cell's ability to methylate arsenic.
Collapse
Affiliation(s)
- Erik J. Tokar
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Chikara Kojima
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Michael P. Waalkes
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
14
|
Metabolomic study in plasma, liver and kidney of mice exposed to inorganic arsenic based on mass spectrometry. Anal Bioanal Chem 2014; 406:1455-69. [DOI: 10.1007/s00216-013-7564-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 11/25/2022]
|
15
|
Medeiros M, Le TM, Troup D, Novak P, Gandolfi AJ. Expression Of Selected Pathway-Marker Genes In Human Urothelial Cells Exposed Chronically To A Non-Cytotoxic Concentration Of Monomethylarsonous Acid. Toxicol Rep 2014; 1:421-434. [PMID: 25177542 PMCID: PMC4144464 DOI: 10.1016/j.toxrep.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/28/2022] Open
Abstract
Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A previous microarray analysis revealed only minor changes in gene expression at one and two months of chronic exposure to MMA(III), contrasting with substantial changes observed at three months of exposure. To address the lack of information between two and three months of exposure (the critical period of transformation), the expression of select pathway marker genes was measured by PCR array analysis on a weekly basis. Cell proliferation rate, anchorage-independent growth, and tumorigenicity in SCID mice were also assessed to determine the early, persistent phenotypic changes and their association with the changes in expression of these selected marker genes. A very similar pattern of alterations in these genes was observed when compared to the microarray results, and suggested that early perturbations in cell signaling cascades, immunological pathways, cytokine expression, and MAPK pathway are particularly important in driving malignant transformation. These results showed a strong association between the acquired phenotypic changes that occurred as early as one to two months of chronic MMA(III) exposure, and the observed gene expression pattern that is indicative of the earliest stages in carcinogenesis.
Collapse
Affiliation(s)
- Matthew Medeiros
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Tam Minh Le
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Daniel Troup
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Petr Novak
- Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic
| | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
16
|
Contreras-Acuña M, García-Barrera T, García-Sevillano M, Gómez-Ariza J. Arsenic metabolites in human serum and urine after seafood (Anemonia sulcata) consumption and bioaccessibility assessment using liquid chromatography coupled to inorganic and organic mass spectrometry. Microchem J 2014. [DOI: 10.1016/j.microc.2013.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Inhibition of monomethylarsonous acid (MMAIII)-induced cell malignant transformation through restoring dysregulated histone acetylation. Toxicology 2013; 312:30-5. [DOI: 10.1016/j.tox.2013.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/22/2022]
|
18
|
Cohen SM, Arnold LL, Beck BD, Lewis AS, Eldan M. Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol 2013; 43:711-52. [DOI: 10.3109/10408444.2013.827152] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW. Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation. Epigenetics 2013; 8:1080-8. [PMID: 23974009 PMCID: PMC3891689 DOI: 10.4161/epi.25926] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide disruption of the epigenetic code is a hallmark of malignancy that encompasses many distinct, highly interactive modifications. Delineating the aberrant epigenome produced during toxicant-mediated malignant transformation will help identify the underlying epigenetic drivers of environmental toxicant-induced carcinogenesis. Gene promoter DNA methylation and gene expression profiling of arsenite-transformed prostate epithelial cells showed a negative correlation between gene expression changes and DNA methylation changes; however, less than 10% of the genes with increased promoter methylation were downregulated. Studies described herein confirm that a majority of the DNA hypermethylation events occur at H3K27me3 marked genes that were already transcriptionally repressed. In contrast to aberrant DNA methylation targeting H3K27me3 pre-marked silent genes, we found that actively expressed C2H2 zinc finger genes (ZNFs) marked with H3K9me3 on their 3′ ends, were the favored targets of DNA methylation linked gene silencing. DNA methylation coupled, H3K9me3 mediated gene silencing of ZNF genes was widespread, occurring at individual ZNF genes on multiple chromosomes and across ZNF gene family clusters. At ZNF gene promoters, H3K9me3 and DNA hypermethylation replaced H3K4me3, resulting in a widespread downregulation of ZNF gene expression, which accounted for 8% of all the downregulated genes in the arsenical-transformed cells. In summary, these studies associate toxicant exposure with widespread silencing of ZNF genes by DNA hypermethylation-linked H3K9me3 spreading, further implicating epigenetic dysfunction as a driver of toxicant associated carcinogenesis.
Collapse
Affiliation(s)
- Paul L Severson
- Department of Pharmacology and Toxicology; College of Pharmacy; University of Arizona; Tucson, AZ USA
| | - Erik J Tokar
- National Toxicology Program Laboratory; National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | - Lukas Vrba
- University of Arizona Cancer Center; Tucson, AZ USA
| | - Michael P Waalkes
- National Toxicology Program Laboratory; National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | - Bernard W Futscher
- Department of Pharmacology and Toxicology; College of Pharmacy; University of Arizona; Tucson, AZ USA; University of Arizona Cancer Center; Tucson, AZ USA
| |
Collapse
|
20
|
Muñiz Ortiz JG, Wallace KA, Leinisch F, Kadiiska MB, Mason RP, Kligerman AD. Catalase has a key role in protecting cells from the genotoxic effects of monomethylarsonous acid: a highly active metabolite of arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:317-326. [PMID: 23640787 DOI: 10.1002/em.21780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/20/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Although it is widely known that arsenic-contaminated drinking water causes many diseases, arsenic's exact mode of action (MOA) is not fully understood. Induction of oxidative stress has been proposed as an important key event in the toxic MOA of arsenic. The authors' studies are centered on identifying a reactive species involved in the genotoxicity of arsenic using a catalase (CAT) knockout mouse model that is impaired in its ability to breakdown hydrogen peroxide (H2 O2 ). The authors assessed the induction of DNA damage using the Comet assay following exposure of mouse Cat(+/) (+) and Cat(-) (/) (-) primary splenic lymphocytes to monomethylarsonous acid (MMA(III) ) to identify the potential role of H2 O2 in mediating cellular effects of this metalloid. The results showed that the Cat(-) (/) (-) lymphocytes are more susceptible to MMA(III) than the Cat(+/) (+) lymphocytes by a small (1.5-fold) but statistically significant difference. CAT activity assays demonstrated that liver tissue has approximately three times more CAT activity than lymphocytes. Therefore, Comet assays were performed on primary Cat(+/) (+) , Cat(+/) (-) , and Cat(-) (/) (-) hepatocytes to determine if the Cat(-) (/) (-) cells were more susceptible to MMA(III) than lymphocytes. The results showed that the Cat(-) (/) (-) hepatocytes exhibit higher levels of DNA strand breakage than the Cat(+/) (+) (approximately fivefold) and Cat(+/) (-) (approximately twofold) hepatocytes exposed to MMA(III) . Electron spin resonance using 5,5-dimethyl-1-pyrroline-N-oxide as the spin-trap agent detected the generation of ·OH via MMA(III) when H2 O2 was present. These experiments suggest that CAT is involved in protecting cells against the genotoxic effects of the ·OH generated by MMA(III) .
Collapse
Affiliation(s)
- Jorge G Muñiz Ortiz
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
21
|
Johnen G, Rozynek P, von der Gathen Y, Bryk O, Zdrenka R, Johannes C, Weber DG, Igwilo-Okuefuna OB, Raiko I, Hippler J, Brüning T, Dopp E. Cross-contamination of a UROtsa stock with T24 cells--molecular comparison of different cell lines and stocks. PLoS One 2013; 8:e64139. [PMID: 23691160 PMCID: PMC3656924 DOI: 10.1371/journal.pone.0064139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/08/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND UROtsa is an authentic, immortalized human urothelial cell line that is used to study the effects of metals and other toxic substances, mostly in the context of bladder cancer carcinogenesis. Unusual properties on the molecular level of a provided UROtsa cell line stock prompted us to verify its identity. METHODS UROtsa cell line stocks from different sources were tested on several molecular levels and compared with other cell lines. MicroRNA and mRNA expression was determined by Real-Time PCR. Chromosome numbers were checked and PCR of different regions of the large T-antigen was performed. DNA methylation of RARB, PGR, RASSF1, CDH1, FHIT, ESR1, C1QTNF6, PTGS2, SOCS3, MGMT, and LINE1 was analyzed by pyrosequencing and compared with results from the cell lines RT4, T24, HeLa, BEAS-2B, and HepG2. Finally, short tandem repeat (STR) profiling was applied. RESULTS All tested UROtsa cell line stocks lacked large T-antigen. STR analysis unequivocally identified our main UROtsa stock as the bladder cancer cell line T24, which was different from two authentic UROtsa stocks that served as controls. Analysis of DNA methylation patterns and RNA expression confirmed their differences. Methylation pattern and mRNA expression of the contaminating T24 cell line showed moderate changes even after long-term culture of up to 56 weeks, whereas miRNAs and chromosome numbers varied markedly. CONCLUSIONS It is important to check the identity of cell lines, especially those that are not distributed by major cell banks. However, for some cell lines STR profiles are not available. Therefore, new cell lines should either be submitted to cell banks or at least their STR profile determined and published as part of their initial characterization. Our results should help to improve the identification of UROtsa and other cells on different molecular levels and provide information on the use of urothelial cells for long-term experiments.
Collapse
Affiliation(s)
- Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, IPA, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bhattacharjee P, Banerjee M, Giri AK. Role of genomic instability in arsenic-induced carcinogenicity. A review. ENVIRONMENT INTERNATIONAL 2013; 53:29-40. [PMID: 23314041 DOI: 10.1016/j.envint.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Exposure to chronic arsenic toxicity is associated with cancer. Although unstable genome is a characteristic feature of cancer cells, the mechanisms leading to genomic instability in arsenic-induced carcinogenesis are poorly understood. While there are excellent reviews relating to genomic instability in general, there is no comprehensive review presenting the mechanisms involved in arsenic-induced genomic instability. This review was undertaken to present the current state of research in this area and to highlight the major mechanisms that may involved in arsenic-induced genomic instability leading to cancer. Genomic instability is broadly classified into chromosomal instability (CIN), primarily associated with mitotic errors; and microsatellite instability (MIN), associated with DNA level instability. Arsenic-induced genomic instability is essentially multi-factorial in nature and involves molecular cross-talk across several cellular pathways, and is modulated by a number of endogenous and exogenous factors. Arsenic and its metabolites generate oxidative stress, which in turn induces genomic instability through DNA damage, irreversible DNA repair, telomere dysfunction, mitotic arrest and apoptosis. In addition to genetic alteration; epigenetic regulation through promoter methylation and miRNA expression alters gene expression profiling leading to genome more vulnerable and unstable towards cancer risk. Moreover, mutations or silencing of pro-apoptotic genes can lead to genomic instability by allowing survival of damaged cells that would otherwise die. Although a large body of information is now generated regarding arsenic-induced carcinogenesis; further studies exploring genome-wide association, role of environment and diet are needed for a better understanding of the arsenic-induced genomic instability.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | | | | |
Collapse
|
23
|
Contreras-Acuña M, García-Barrera T, García-Sevillano MA, Gómez-Ariza JL. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry. J Chromatogr A 2013; 1282:133-41. [PMID: 23422896 DOI: 10.1016/j.chroma.2013.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/30/2022]
Abstract
Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food.
Collapse
Affiliation(s)
- M Contreras-Acuña
- Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | | | | | | |
Collapse
|
24
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
25
|
DeGraff DJ, Robinson VL, Shah JB, Brandt WD, Sonpavde G, Kang Y, Liebert M, Wu XR, Taylor JA. Current preclinical models for the advancement of translational bladder cancer research. Mol Cancer Ther 2012; 12:121-30. [PMID: 23269072 DOI: 10.1158/1535-7163.mct-12-0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care.
Collapse
Affiliation(s)
- David J DeGraff
- 1Vanderbilt University Medical Center, Nashville,Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW. Agglomerates of aberrant DNA methylation are associated with toxicant-induced malignant transformation. Epigenetics 2012; 7:1238-48. [PMID: 22976526 PMCID: PMC3499325 DOI: 10.4161/epi.22163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.
Collapse
Affiliation(s)
- Paul L Severson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
27
|
Bailey KA, Wallace K, Smeester L, Thai SF, Wolf DC, Edwards SW, Fry RC. Transcriptional Modulation of the ERK1/2 MAPK and NF-κB Pathways in Human Urothelial Cells After Trivalent Arsenical Exposure: Implications for Urinary Bladder Cancer. JOURNAL OF CANCER RESEARCH UPDATES 2012; 1:57-68. [PMID: 23487506 PMCID: PMC3593739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chronic exposure to drinking water contaminated with inorganic arsenic (iAs) is associated with an increased risk of urinary bladder (UB) cancers in humans. The exact role of specific iAs metabolite(s) in As-mediated carcinogenesis remains largely unknown. Experimental evidence suggests that trivalent arsenicals, namely arsenite (iAsIII) and two of its metabolites, monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), are possible proximate UB carcinogens. Here, we used a transcriptomics approach to examine perturbed molecular pathways in a human urothelial cell line (UROtsa) after short-term exposure to iAsIII, MMAIII and DMAIII. Molecular pathways containing genes that encode proteins implicated in UB cancer development were perturbed by both MMAIII and DMAIII. These pathways included those of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK 1/2 MAPK) and nuclear factor kappa beta (NF-κB). Together, these results may inform the current understanding of effects in the UB induced by acute As exposure and the relationship of these effects with As-mediated carcinogenesis.
Collapse
Affiliation(s)
- Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kathleen Wallace
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Douglas C. Wolf
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio. Toxicol Appl Pharmacol 2012; 262:185-93. [PMID: 22575231 DOI: 10.1016/j.taap.2012.04.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/10/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
Abstract
Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As(III)) produces organic arsenicals, including MMA(III), MMA(V) and DMA(V) with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As(III) to DMA(V) as an end product and produced MMA(III) and MMA(V) as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As(III) as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans.
Collapse
|
29
|
Escudero-Lourdes C, Wu T, Camarillo JM, Gandolfi AJ. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells. Toxicol Appl Pharmacol 2012; 258:10-8. [PMID: 22015448 PMCID: PMC3254786 DOI: 10.1016/j.taap.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation.
Collapse
Affiliation(s)
- C Escudero-Lourdes
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico.
| | | | | | | |
Collapse
|
30
|
Gomez-Rubio P, Klimentidis YC, Cantu-Soto E, Meza-Montenegro MM, Billheimer D, Lu Z, Chen Z, Klimecki WT. Indigenous American ancestry is associated with arsenic methylation efficiency in an admixed population of northwest Mexico. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:36-49. [PMID: 22047162 PMCID: PMC3572940 DOI: 10.1080/15287394.2011.615107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Many studies provide evidence relating lower human arsenic (As) methylation efficiency, represented by high percent urinary monomethylarsonic acid (MMA(V)), with several As-induced diseases, possibly due to the fact that MMA(V) serves as a proxy for MMA(III), the most toxic As metabolite. Some epidemiological studies suggested that indigenous Americans (AME) methylate As more efficiently; however, data supporting this have been equivocal. The aim of this study was to characterize the association between AME ancestry and As methylation efficiency using a panel of ancestry informative genetic markers to determine individual ancestry proportions in an admixed population (composed of two or more isolated ancestral populations) of 746 individuals environmentally exposed to As in northwest Mexico. Total urinary As (TAs) mean and range were 170.4 and 2.3-1053.5 μg/L, while percent AME (%AME) mean and range were 72.4 and 23-100. Adjusted (gender, age, AS3MT 7388/M287T haplotypes, body mass index [BMI], and TAs) multiple regression model showed that higher AME ancestry is significantly associated with lower percentage of urinary As excreted as MMA(V) (%uMMA) in this population (p < .01). Data also demonstrated a significant interaction between BMI and gender, indicating negative association between BMI and %uMMA, stronger in women than men (p < .01). Moreover, age and the AS3MT variants 7388 (intronic) and M287T (nonsynonymous) were also significantly associated with As methylation efficiency (p < .01). This study highlights the importance of BMI and indigenous American ancestry in some of the observed variability in As methylation efficiency, underscoring the need to be considered in epidemiology studies, particularly those carried out in admixed populations.
Collapse
Affiliation(s)
- Paulina Gomez-Rubio
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
| | - Yann C. Klimentidis
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ernesto Cantu-Soto
- Department of Environmental Sciences, Instituto Tecnologico de Sonora, Ciudad Obregon, Sonora, Mexico
| | - Maria M. Meza-Montenegro
- Department of Environmental Sciences, Instituto Tecnologico de Sonora, Ciudad Obregon, Sonora, Mexico
| | - Dean Billheimer
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona
| | - Zhenqiang Lu
- Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, Arizona
| | - Zhao Chen
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Walter T. Klimecki
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
- To whom correspondence should be addressed: Walter Klimecki, DVM, Ph.D., 1657 E Helen St, RM319, Thomas Keating Bldg. Tucson, AZ 85721, Tel. 520-626-7470, Fax. 520-626-2466,
| |
Collapse
|
31
|
Wang Z, Yang J, Fisher T, Xiao H, Jiang Y, Yang C. Akt activation is responsible for enhanced migratory and invasive behavior of arsenic-transformed human bronchial epithelial cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:92-7. [PMID: 21954225 PMCID: PMC3261952 DOI: 10.1289/ehp.1104061] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/27/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arsenic is one of the most common environmental contaminants. Long-term exposure to arsenic causes human bronchial epithelial cell (HBEC) malignant transformation and lung cancer. However, the mechanism of arsenic lung carcinogenesis is not clear, and the migratory and invasive properties of arsenic-transformed cells (As-transformed cells) have rarely been studied. OBJECTIVES This study was designed to investigate the migratory and invasive behavior of As-transformed HBECs and the underlying mechanism. METHODS As-transformed p53lowHBECs were generated by exposing p53-knockdown HBECs to sodium arsenite (2.5 μM) for 16 weeks. Cell migration was assessed by transwell migration and wound-healing assay. Cell invasion was evaluated using Matrigel-coated transwell chambers. Gene overexpression, small interfering RNA (siRNA) knockdowns, and pharmacological inhibitors were used to determine the potential mechanism responsible for enhanced cell migration and invasion. RESULTS Transwell migration and invasion assays revealed that As-transformed p53lowHBECs were highly migratory and invasive. Akt (also known as protein kinase B) and extracellular signal-regulated protein kinase 1/2 (Erk1/2) were strongly activated in As-transformed p53lowHBECs. Stable expression of microRNA 200b in As-transformed p53lowHBECs abolished Akt and Erk1/2 activation and completely suppressed cell migration and invasion. Pharmacological inactivation of Akt but not Erk1/2 significantly decreased cell migration and invasion. Inhibition of Akt reduced the expression of epithelial-to-mesenchymal transition-inducing transcription factors zinc-finger E-box-binding homeobox factor 1 (ZEB1) and ZEB2. siRNA knockdown of ZEB1 and ZEB2 impaired As-transformed p53lowHBEC migration and invasion. CONCLUSIONS Akt activation plays a critical role in enabling As-transformed HBEC migration and invasion by promoting ZEB1 and ZEB2 expression.
Collapse
Affiliation(s)
- Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kong W, Kuester RK, Gallegos A, Sipes IG. Induction of DNA damage in human urothelial cells by the brominated flame retardant 2,2-bis(bromomethyl)-1,3-propanediol: role of oxidative stress. Toxicology 2011; 290:271-7. [PMID: 22019925 PMCID: PMC3248618 DOI: 10.1016/j.tox.2011.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/30/2011] [Accepted: 10/09/2011] [Indexed: 01/02/2023]
Abstract
2,2-bis(bromomethyl)-1,3-propanediol (BMP) is an extensively used brominated flame retardant found in urethane foams and polyester resins. In a 2-year dietary study conducted by the National Toxicology Program, BMP caused neoplastic lesions at multiple sites including the urinary bladder in both rats and mice. The mechanism of its carcinogenic effect is unknown. In the present study, using SV-40 immortalized human urothelial cells (UROtsa), endpoints associated with BMP induced DNA damage and oxidative stress were investigated. The effects of time (1-24h) and concentration (5-100 μM) on BMP induced DNA strand breaks were assessed via the alkaline comet assay. The results revealed evidence of DNA strand breaks at 1 and 3h following incubation of cells with non-cytotoxic concentrations of BMP. Strand breaks were not present after 6h of incubation. Evidences for BMP associated oxidative stress include: an elevation of intracellular ROS formation as well as induction of Nrf2 and HSP70 protein levels. In addition, DNA strand breaks were attenuated when cells were pre-treated with N-acetyl-l-cysteine (NAC) and oxidative base modifications were revealed when a lesion specific endonuclease, human 8-hydroxyguanine DNA glycosylase 1 (hOGG1) was introduced into the comet assay. In conclusion, these results demonstrate that BMP induces DNA strand breaks and oxidative base damage in UROtsa cells. Oxidative stress is a significant, determinant factor in mediating these DNA lesions. These early genotoxic events may, in part, contribute to BMP-induced carcinogenesis observed in rodents.
Collapse
Affiliation(s)
- Weixi Kong
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
33
|
Medeiros M, Zheng X, Novak P, Wnek SM, Chyan V, Escudero-Lourdes C, Gandolfi AJ. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology 2011; 291:102-12. [PMID: 22108045 DOI: 10.1016/j.tox.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/13/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A microarray analysis was performed to assess the transcriptional changes in UROtsa during the critical window of chronic 50nM MMA(III) exposure that leads to transformation at 3 months of exposure. The analysis revealed only minor changes in gene expression at 1 and 2 months of exposure, contrasting with substantial changes observed at 3 months of exposure. The gene expression changes at 3 months were analyzed showing distinct alterations in biological processes and pathways such as a response to oxidative stress, enhanced cell proliferation, anti-apoptosis, MAPK signaling, as well as inflammation. Twelve genes selected as markers of these particular biological processes were used to validate the microarray and these genes showed a time-dependent changes at 1 and 2 months of exposure, with the most substantial changes occurring at 3 months of exposure. These results indicate that there is a strong association between the acquired phenotypic changes that occur with chronic MMA(III) exposure and the observed gene expression patterns that are indicative of a malignant transformation. Although the substantial changes that occur at 3 months of exposure may be a consequence of transformation, there are common occurrences of altered biological processes between the first 2 months of exposure and the third, which may be pivotal in driving transformation.
Collapse
Affiliation(s)
- Matthew Medeiros
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States.
| | | | | | | | | | | | | |
Collapse
|
34
|
Interdependent genotoxic mechanisms of monomethylarsonous acid: role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells. Toxicol Appl Pharmacol 2011; 257:1-13. [PMID: 21925530 DOI: 10.1016/j.taap.2011.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/17/2011] [Accepted: 08/30/2011] [Indexed: 01/27/2023]
Abstract
Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA(III)), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA(III) exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA(III), PARP-1 activity does not increase despite the increase in MMA(III)-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA(III) exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA(III) indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA(III). The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA(III) to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA(III) to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA(III) exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA(III). Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA(III)-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA(III) may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation: elevated levels of MMA(III)-induced DNA damage through the production of reactive oxygen species, and the direct MMA(III)-induced inhibition of PARP-1.
Collapse
|
35
|
Cohen SM. Reply to “Reversal and Prevention of Arsenic-Induced Human Bronchial Epithelial Cell Malignant Transformation by MicroRNA-200b”. Toxicol Sci 2011. [DOI: 10.1093/toxsci/kfr128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 2011; 15:551-89. [PMID: 20919933 PMCID: PMC3118659 DOI: 10.1089/ars.2010.3492] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications represent mechanisms by which cells may effectively translate multiple signaling inputs into phenotypic outputs. Recent research is revealing that redox metabolism is an increasingly important determinant of epigenetic control that may have significant ramifications in both human health and disease. Numerous characterized epigenetic marks, including histone methylation, acetylation, and ADP-ribosylation, as well as DNA methylation, have direct linkages to central metabolism through critical redox intermediates such as NAD(+), S-adenosyl methionine, and 2-oxoglutarate. Fluctuations in these intermediates caused by both normal and pathologic stimuli may thus have direct effects on epigenetic signaling that lead to measurable changes in gene expression. In this comprehensive review, we present surveys of both metabolism-sensitive epigenetic enzymes and the metabolic processes that may play a role in their regulation. To close, we provide a series of clinically relevant illustrations of the communication between metabolism and epigenetics in the pathogenesis of cardiovascular disease, Alzheimer disease, cancer, and environmental toxicity. We anticipate that the regulatory mechanisms described herein will play an increasingly large role in our understanding of human health and disease as epigenetics research progresses.
Collapse
Affiliation(s)
- Anthony R Cyr
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242-1181, USA
| | | |
Collapse
|
37
|
Naranmandura H, Xu S, Sawata T, Hao WH, Liu H, Bu N, Ogra Y, Lou YJ, Suzuki N. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity. Chem Res Toxicol 2011; 24:1094-103. [PMID: 21648415 DOI: 10.1021/tx200156k] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity.
Collapse
Affiliation(s)
- Hua Naranmandura
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cohen SM. Reply to "Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b". Toxicol Sci 2011; 122:606; author reply 607-9. [PMID: 21670144 DOI: 10.1093/toxsci/kfr151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Banerjee M, Bhattacharjee P, Giri AK. Arsenic-induced Cancers: A Review with Special Reference to Gene, Environment and Their Interaction. Genes Environ 2011. [DOI: 10.3123/jemsge.33.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|