1
|
Zang C, Li J, Zhang Y, Deng W, Mao M, Zhu W, Chen W. Causal effects of lipid-lowering drugs on inflammatory skin diseases: Evidence from drug target Mendelian randomisation. Exp Dermatol 2024; 33:e15157. [PMID: 39227185 DOI: 10.1111/exd.15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
Clinical research has revealed that inflammatory skin diseases are associated with dyslipidaemia. Modulating lipids is also a rising potential treatment option. However, there is heterogeneity in the existing evidence and a lack of large-scale clinical trials. Observational research is prone to bias, making it difficult to determine causality. This study aimed to evaluate the causal association between lipid-lowering drugs and inflammatory skin diseases. A drug target Mendelian randomisation (MR) analysis was conducted. Genetic targets of lipid-lowering drugs, including proprotein convertase subtilis kexin 9 (PCSK9) and 3-hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitor, were screened. Common inflammatory skin diseases, including psoriasis, allergic urticaria, rosacea, atopic dermatitis, systemic sclerosis and seborrhoeic dermatitis, were considered as outcomes. Gene-predicted inhibition of PCSK9 was causally associated with a decreased risk of psoriasis (ORIVW [95%CI] = 0.600 [0.474-0.761], p = 2.48 × 10-5) and atopic dermatitis (ORIVW [95%CI] = 0.781 [0.633-0.964], p = 2.17 × 10-2). Gene-predicted inhibition of HMGCR decreased the risk of seborrhoeic dermatitis (ORIVW [95%CI] = 0.407 [0.168-0.984], p = 4.61 × 10-2) but increased the risk of allergic urticaria (ORIVW [95%CI] = 3.421 [1.374-8.520], p = 8.24 × 10-3) and rosacea (ORIVW [95%CI] = 3.132 [1.260-7.786], p = 1.40 × 10-2). Among all causal associations, only PCSK9 inhibition demonstrated a robust causal effect on psoriasis after a more rigorous Bonferroni test (p < 4.17 × 10-3, which is 0.05/12). Modulating lipids via PCSK9 inhibition may offer potential therapeutic targets for psoriasis and atopic dermatitis. Given the potential cutaneous side effects associated with HMGCR inhibitors, PCSK9 inhibitors could be considered viable alternatives in lipid-lowering medication.
Collapse
Affiliation(s)
- Chenyang Zang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenyu Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Manyun Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Scherbakov A, Zakharov AV, Mikhaevich EI, Salnikova DI, Yadykov AV, Kozhevnikova AA, Shirinian VZ. Photostability and Antiproliferative Activity of Furan Analogues of Combretastatin A-4. Chem Res Toxicol 2022; 35:2014-2024. [PMID: 36084334 DOI: 10.1021/acs.chemrestox.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer is one of the most serious health problems that usually require heavy medical treatment. It is important to ensure that no additional burden is placed on patients due to the modes of administration and/or poor quality of pharmaceuticals. In this regard, understanding, quantifying, and improving the photostability (resistance to UV light or sunlight) of drugs is among the important elements that can improve the patient's quality of life. In this work, the photochemical properties of a wide range of furanone analogues of combretastatin A-4 and their antiproliferative activity against A-431 epidermoid carcinoma cells were studied in a search for compounds with improved photostability and antiproliferative activity. It was found that the incorporation of an arylidene moiety led to a significant improvement in photostability, while the antiproliferative activity strongly depends on the nature of the aryl residue in the arylidene moiety. The high photostability of arylidenes was achieved due to the delocalization of the central double bond of the 1,3,5-hexatriene system, which limited the 6π-electrocyclization. The best results in terms of antiproliferative activity were obtained for thiophene arylidene (IC50 = 0.6 μM) and 3,4-diarylfuran (IC50 = 0.047 μM). The obtained results address the lack of data available now in scientific literature on the photodegradation of combretastatin A-4 analogues and should be taken into account in studies of the side effects of pharmaceuticals based on them.
Collapse
Affiliation(s)
- Alexander Scherbakov
- N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115522 Moscow, Russian Federation
| | - Alexey V Zakharov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ekaterina I Mikhaevich
- N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115522 Moscow, Russian Federation
| | - Diana I Salnikova
- N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115522 Moscow, Russian Federation
| | - Anton V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Arina A Kozhevnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Valerii Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Significance of stressor media on the stability of statins: a critical assessment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02306-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Götzinger F, Reichrath J, Millenaar D, Lauder L, Meyer MR, Böhm M, Mahfoud F. Photoinduced skin reactions of cardiovascular drugs-a systematic review. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2022; 8:420-430. [PMID: 35278085 DOI: 10.1093/ehjcvp/pvac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This systemic review aims to provide a practical overview of the prevalence, clinical manifestation, and management of adverse photoinduced skin reactions caused by frequently used cardiovascular drugs and to assess their potential relevance for skin cancer development. Data search included PubMed, Web of Science, and the Cochrane Library. A systematic review of peer-reviewed studies reporting the photosensitizing and/or skin cancer-inducing properties of common cardiovascular drugs was performed and a guide to clinical management of photoinduced skin eruptions by cardiovascular drugs was provided. Study quality was assessed for major methodological biases. A total of 58 studies were identified (i.e. 23 case reports, 14 observational studies, 10 review articles, 10 experimental studies, and 1 meta-analysis). Most commonly, drug-associated adverse photoinduced cutaneous reactions were caused by phototoxic and photoallergic mechanisms. There is evidence suggesting that amiodarone and dronedarone, thiazide diuretics, thiazide-like diuretics, angiotensin receptor blockers, dihydropyridine-type calcium channel blockers, and certain angiotensin-converting enzyme inhibitors and statins may cause photoinduced adverse cutaneous reactions. Other drugs such as anticoagulants, antiplatelets, aldosterone antagonists, and fibrates have not been linked with photosensitizing reactions or adverse cutaneous reactions. Some drugs, i.e. thiazides and thiazide-like diuretics, were associated with an increased risk of non-melanoma skin cancers (basal cell carcinoma and squamous cell carcinoma). Certain commonly used cardiovascular drugs have been associated with adverse photoinduced cutaneous reactions. If they occur, further diagnosis and treatment might be needed, depending on the severity and progress. Whether photosensitizing drugs increase the risk of skin cancer remains elusive and further randomized controlled trials are required.
Collapse
Affiliation(s)
- Felix Götzinger
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, Geb. 41, Kirrbergerstraβe 100, 66424 Homburg, Germany
| | - Jörg Reichrath
- Department of Adult and Pediatric Dermatology, Venereology, Allergology, University Hospital Saarland, Saarland University, 66424 Homburg, Germany
| | - Dominic Millenaar
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, Geb. 41, Kirrbergerstraβe 100, 66424 Homburg, Germany
| | - Lucas Lauder
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, Geb. 41, Kirrbergerstraβe 100, 66424 Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, Geb. 41, Kirrbergerstraβe 100, 66424 Homburg, Germany
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, Geb. 41, Kirrbergerstraβe 100, 66424 Homburg, Germany
| |
Collapse
|
5
|
Scherbakov AM, Balakhonov RY, Salnikova DI, Sorokin DV, Yadykov AV, Markosyan AI, Shirinian VZ. Light-driven photoswitching of quinazoline analogues of combretastatin A-4 as an effective approach for targeting skin cancer cells. Org Biomol Chem 2021; 19:7670-7677. [PMID: 34524348 DOI: 10.1039/d1ob01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel quinazoline series of photoswitchable combretastatin A-4 (CA-4) analogues were synthesized and their photochemical properties and antiproliferative activity against A431 epidermoid carcinoma cells were studied. It was found that quinazoline analogues, in contrast to the majority of the known CA-4, exhibit high antiproliferative activity in the E-form as well. Photoswitching of the E-form to the Z-form resulted in a multiple (9-fold) increase in antiproliferative activity. 1H NMR monitoring showed that these compounds are very resistant to UV (λ = 365 nm) or sunlight irradiation and do not undergo photodegradation with a loss of antiproliferative activity that is inherent in heterocyclic analogues of CA-4. Similar photoswitching and an increase in antiproliferative activity are observed on exposure to sunlight. A selected compound (1a-Z51) in sub-micromolar concentrations induced apoptosis in A431 cells, while rad50/ATM/p53 were not involved in cell death. The growth of A431 cells was significantly inhibited after combination treatment with compound 1a-Z51 and chemotherapy drugs (cisplatin or 5-fluorouracil). In summary, the quinazoline analogues of CA-4 represent a promising strategy to achieve a photoswitchable potency for the treatment of cancers, including the development of combination therapies.
Collapse
Affiliation(s)
- A M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - R Yu Balakhonov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation.
| | - D I Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - D V Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - A V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation.
| | - A I Markosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation.
| |
Collapse
|
6
|
Photosensitizing Medications and Skin Cancer: A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13102344. [PMID: 34066301 PMCID: PMC8152064 DOI: 10.3390/cancers13102344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
(1) The incidence of skin cancer is increasing in the United States (US) despite scientific advances in our understanding of skin cancer risk factors and treatments. In vitro and in vivo studies have provided evidence that suggests that certain photosensitizing medications (PSMs) increase skin cancer risk. This review summarizes current epidemiological evidence on the association between common PSMs and skin cancer. (2) A comprehensive literature search was conducted to identify meta-analyses, observational studies and clinical trials that report on skin cancer events in PSM users. The associated risks of keratinocyte carcinoma (squamous cell carcinoma and basal cell carcinoma) and melanoma are summarized, for each PSM. (3) There are extensive reports on antihypertensives and statins relative to other PSMs, with positive and null findings, respectively. Fewer studies have explored amiodarone, metformin, antimicrobials and vemurafenib. No studies report on the individual skin cancer risks in glyburide, naproxen, piroxicam, chlorpromazine, thioridazine and nalidixic acid users. (4) The research gaps in understanding the relationship between PSMs and skin cancer outlined in this review should be prioritized because the US population is aging. Thus the number of patients prescribed PSMs is likely to continue to rise.
Collapse
|
7
|
Pluskota-Karwatka D, Hoffmann M. Computational studies on statins photoactivity. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Statins are popular drugs widely prescribed to control hypercholesterolaemia and to prevent cardiovascular diseases. Synthetic statins constitute a group of pharmaceuticals which are very sensitive to exposure to light in both UVA and UVB ranges. Light, by causing drugs degradation, can essentially change their pharmaceutical properties leading even to the loss of therapeutic activity and/or to the formation of deleterious photoproducts. Drugs which exhibit photochemical reactivity may elicit undesired adverse effects. A detailed understanding of mechanisms involved in molecular basis of these effects origin is very important for evaluating the photobiological risk associated with therapy in which drugs prone to exposure to light are involved. In this work we critically discussed finding regarding the mechanisms of synthetic statins phototransformation. We showed inconsistency of some previously reported facts and revised earlier presented studies. We also completed the lack of information on pitavastatin photobehaviour. This all together resulted in proposal of new schemes for the statins photodecomposition. We reviewed data derived from both experimental and computational methods. Studies of photochemical problems by the use of theoretical methods enable getting insight into areas of some fascinating events that experimental techniques can touch only indirectly. Besides effect of light, phenomenon of statins’ sensitivity to pH and resulting implications were discussed. Statins undergo pH-dependent interconversion between their pharmacologically active hydroxy acid and inactive lactone forms, and it was shown that for both forms, drugs’ interactions should be considered. Knowledge of the statins interconversion mechanisms is important for understanding how differences in the structures of their molecules can affect the drugs’ activity.
Collapse
Affiliation(s)
- Donata Pluskota-Karwatka
- Faculty of Chemistry , Adam Mickiewicz University , Uniwersytetu Poznańskiego 8 , 61-614 Poznań , Poland
| | - Marcin Hoffmann
- Faculty of Chemistry , Adam Mickiewicz University , Uniwersytetu Poznańskiego 8 , 61-614 Poznań , Poland
| |
Collapse
|
8
|
Photoprotective Effects of Selected Amino Acids on Naproxen Photodegradation in Aqueous Media. Pharmaceuticals (Basel) 2020; 13:ph13060135. [PMID: 32604908 PMCID: PMC7345999 DOI: 10.3390/ph13060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
It is important to develop a photostabilization strategy to ensure the quality of photosensitive compounds, including pharmaceuticals. This study focused on the protective effects of 20 amino acids on the photodegradation of naproxen (NX), a photosensitive pharmaceutical, to clarify the important nature of a good photostabilizer. Our previous report indicated the photodegradability of NX and the protective effects of some antioxidants on its photodegradation, therefore, this compound was used as a model compound. The degradation of NX in aqueous media during ultraviolet light (UV) irradiation and the protective effects of selected amino acids were monitored through high-performance liquid chromatography (HPLC), equipped with a reverse-phase column. Addition of cysteine, tryptophan, and tyrosine induced the significant suppression of NX photodegradation after UV irradiation for 3 h (residual amount of NX; 15.35%, 6.82%, and 15.64%, respectively). Evaluation of the antioxidative activity and UV absorption spectrum showed that cysteine suppressed NX degradation through its antioxidative ability, while tryptophan and tyrosine suppressed it through their UV filtering ability. Furthermore, three amino acids at higher concentrations (more than 100 µmol/L) showed more protective effects on NX photodegradation. For 10 mmol/L, residual amounts of NX with cysteine, tryptophan, and tyrosine were 58.51%, 69.34%, and 82.40%, respectively. These results showed the importance of both photoprotective potencies (antioxidative potency and UV filtering potency) and stability to UV irradiation for a good photostabilizer of photosensitive pharmaceuticals.
Collapse
|
9
|
Phototransformations of pitavastatin - The inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Yadykov AV, Scherbakov AM, Trofimova VV, Lvov AG, Markosyan AI, Zavarzin IV, Shirinian VZ. Photoswitching off the Antiproliferative Activity of Combretastatin A-4 Analogues. Org Lett 2019; 21:9608-9612. [DOI: 10.1021/acs.orglett.9b03780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anton V. Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander M. Scherbakov
- N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115522 Moscow, Russian Federation
| | - Victoria V. Trofimova
- D.I. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| | - Andrey G. Lvov
- N. D. Zelinsky Institute of Organic Chemistry, RAS, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ashot I. Markosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan 0014, Republic of Armenia
| | - Igor V. Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, RAS, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| | - Valerii Z. Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, RAS, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
11
|
|
12
|
Jarmużek D, Pedzinski T, Hoffmann M, Siodła T, Salus K, Pluskota-Karwatka D. Experimental and theoretical studies on fluvastatin primary photoproduct formation. Phys Chem Chem Phys 2017. [PMID: 28650504 DOI: 10.1039/c7cp01094j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluvastatin (FLV) belongs to the group of compounds referred to as statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors. Statins act as cholesterol-lowering agents and are among the most frequently prescribed drugs. They upregulate low-density lipoprotein receptors in the liver by binding to the active site of HMG-CoA reductase, which is the key enzyme in cholesterol biosynthesis. Statins have been detected as contaminants in natural waters and are susceptible to degradation upon exposure to light. Fluvastatin is extremely sensitive to light; upon irradiation it forms a range of photoproducts. In this study the fluvastatin molar absorption coefficient and the quantum yield of the drug photodegradation were determined. The FLV photodegradation quantum yield value determined in this work (Φ = 0.13 ± 0.02) was found to be significantly larger than that previously reported in the literature. Our results also showed that the generation of singlet oxygen is not involved in the drug photodecomposition indicating that the excited triplet state of fluvastatin is not populated efficiently. Moreover, experimental methods and DFT calculations were applied to get insight into the possible mechanisms of fluvastatin primary photoproduct formation. Using the transient absorption spectroscopy technique, the transient species formed immediately after the drug excitation were followed, and the scheme for fluvastatin primary photochemistry was suggested. The primary photoproducts were identified on the basis of spectroscopic and spectrometric methods. A new mechanism for photooxygenation leading to the formation of one of the identified photoproducts (FP2) was proposed and a new approach to the formation of the other photoproduct (FP1) was provided. The theoretical mechanistic explanation of the photoproduct formation is in excellent agreement with the experimental data.
Collapse
Affiliation(s)
- Dorota Jarmużek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
13
|
Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents. Eur J Med Chem 2017; 134:258-270. [PMID: 28419928 DOI: 10.1016/j.ejmech.2017.03.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/01/2023]
Abstract
The 2-oxindole nucleus is the central core to develop new anticancer agents and its substitution at the 3-position can effect antitumor activity. Utilizing a pharmacophore hybridization approach, a novel series of antiproliferative agents was obtained by the modification of the structure of 3-substituted-2-oxindole pharmacophore by the attachment of the α-bromoacryloyl moiety, acting as a Michael acceptor, at the 5-position of 2-oxindole framework. The impact of the substituent at the 3-position of 2-oxindole core on the potency and selectivity against a panel of seven different cancer cell lines was examined. We found that these hybrid molecules displayed potent antiproliferative activity against a panel of four cancer cell lines, with one-to double digit nanomolar 50% inhibitory concentrations (IC50). A distinctive selective antiproliferative activity was obtained towards CCRF-CEM and RS4; 11 leukemic cell lines. In order to study the possible mechanism of action, we observed that the two most active compounds namely 3(E) and 6(Z) strongly induce apoptosis that follow the mitochondrial pathway. Interestingly a decrease of intracellular reduced glutathione content (GSH) and reactive oxygen species (ROS) production was detected in treated cells compared with controls suggesting that these effects may be involved in their mechanism of action.
Collapse
|
14
|
Schäfer K, Ihmels H, Porcù E, Viola G. Control of the DNA-Binding and Antiproliferative Properties of Hydroxybenzo[b]quinolizinium Derivatives with pH and Light. Chemistry 2016; 23:370-379. [PMID: 27758047 DOI: 10.1002/chem.201603807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/06/2022]
Abstract
The interactions of 8-hydroxybenzo[b]quinolizinium and 9-hydroxybenzo[b]quinolizinium with DNA are investigated in detail. Specifically, spectrophotometric and spectrofluorimetric titrations, thermal DNA-denaturation experiments as well as CD- and LD-spectroscopic analysis show that a pH shift by just one or two orders of magnitude has a significant impact on the interactions of the acidic ligands with the nucleic acid. Both ligands bind with high affinity to DNA at pH 6 (Kb ≈105 m-1 ). At pH 7 or 8, however, the binding interactions are much weaker because of the formation of the corresponding charge-neutral conjugate bases, the affinity to DNA of which is reduced because of the resulting lack of a positive charge. Notably, the variation of DNA affinity occurs in a range that corresponds to the fluctuations of pH values under physiological conditions, so that these ligands may be employed to target DNA in tissue with particular pH values, especially, cancer cells. The antiproliferative activity of the title compounds under different conditions is also investigated. In the absence of irradiation, both compounds show only a modest cytotoxicity toward cancer cells. However, upon irradiation, even at low UV-A doses, a significant reduction of cell viability of tumor cell lines is induced by the ligands.
Collapse
Affiliation(s)
- Katy Schäfer
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Heiko Ihmels
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Elena Porcù
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, University of Padova, via Giustiniani 3, 35128, Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, University of Padova, via Giustiniani 3, 35128, Padova, Italy
| |
Collapse
|
15
|
Salvador A, Vedaldi D, Brun P, Dall'Acqua S. Vandetanib-induced phototoxicity in human keratinocytes NCTC-2544. Toxicol In Vitro 2014; 28:803-11. [PMID: 24681205 DOI: 10.1016/j.tiv.2014.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 02/01/2023]
Abstract
The phototoxicity of the new anticancer drug vandetanib was evaluated using human keratinocyte cell line, NCTC-2544. This study was started since many clinical cases of vandetanib photosensitizing reactions were recently reported in literature. Vandetanib induces a clear drop in human keratinocytes viability after cell irradiation in concentration and UV-A dose dependent mode. Since vandetanib can photolyze with the formation of two main photoproducts after UV-A exposure, the contribution of these new species was also evaluated. These two photoproducts did not have a main role in the phototoxicity of their parent drug. In our opinion, the main hypothesis for the vandetanib phototoxic potential is the formation of a very reactive specie, such as an aryl radical, which can react promptly with different targets inside the cells. In fact, a massive DNA photodamage was detected both in the in vitro DNA photocleavage experiments, and in cells. Moreover, vandetanib was able to photoinduce lipid peroxidation and protein oxidations. Vandetanib photoinduced cell death by apoptosis with the involvement of mitochondria and lysosomes.
Collapse
Affiliation(s)
- Alessia Salvador
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Daniela Vedaldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35131 Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
16
|
Nardi G, Marin ML, de Souza PA, Lhiaubet-Vallet V, Miranda MA. Generation of reactive aryl radical intermediates in the reductive photodehalogenation of itraconazole. RSC Adv 2014. [DOI: 10.1039/c3ra43644f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Dall’Acqua S, Vedaldi D, Salvador A. Isolation and structure elucidation of the main UV-A photoproducts of vandetanib. J Pharm Biomed Anal 2013; 84:196-200. [PMID: 23850934 DOI: 10.1016/j.jpba.2013.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
18
|
Seto Y, Kato M, Yamada S, Onoue S. Development of micellar reactive oxygen species assay for photosafety evaluation of poorly water-soluble chemicals. Toxicol In Vitro 2013; 27:1838-46. [DOI: 10.1016/j.tiv.2013.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 05/16/2013] [Indexed: 11/17/2022]
|
19
|
Kleinman MH. Using photoreactivity studies to provide insight into the photosafety of pharmaceutical therapies. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
A study of photodegradation of drug rosuvastatin calcium in solid state and solution under UV and visible light irradiation: The influence of certain dyes as efficient stabilizers. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2012.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts. Arch Toxicol 2011; 86:483-96. [PMID: 22038141 DOI: 10.1007/s00204-011-0772-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
Abstract
This study reports the results of an investigation of the phototoxicity mechanism induced by pitavastatin and its photoproducts, namely 6-cyclopropyl-10-fluoro-7,8-dihydrobenzo[k]phenanthridine (PP3) and 6-cyclopropyl-10-fluorobenzo[k]phenanthridine (PP4). The phototoxicity was tested in human keratinocytes cell lines NCTC-2544, and the results proved that under the same conditions, all three compounds exhibited phototoxic effects in the model tested. The reduction in cell viability was found to be both concentration- and UVA dose-dependent. A point of note is that both the photoproducts produced a dramatic decrease in cell viability with GI(50) values one order of magnitude lower compared to the parent compound. In particular, the fully aromatic derivative (PP4) showed the highest antiproliferative activity. Flow cytometric analysis indicated that pitavastatin and the photoproduct PP4 principally induced necrosis, as revealed by the large appearance of propidium iodide-positive cells and also confirmed by the rapid drop in cellular ATP levels. Further studies committed to better understanding of photoinduced cell death mechanism(s) revealed that neither pitavastatin nor PP4 induced mitochondrial depolarization or lysosomal damage, but, interestingly, extensive cell lipid membrane peroxidation along with a significant oxidation of model proteins occurred, suggesting that pitavastatin and PP4 exert their phototoxic effect mainly in the cellular membranes. The present results suggest that the phototoxicity of pitavastatin may be mediated by the formation of benzophenanthridine-like photoproducts that appear to have high potential as photosensitizers.
Collapse
|
22
|
Nardi G, Lhiaubet-Vallet V, Leandro-Garcia P, Miranda MA. Potential phototoxicity of rosuvastatin mediated by its dihydrophenanthrene-like photoproduct. Chem Res Toxicol 2011; 24:1779-85. [PMID: 21923146 DOI: 10.1021/tx200341f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, rosuvastatin has been used to gain insight into the molecular basis of statin photosensitization. This lipid-lowering drug, also known as "superstatin", contains a 2-vinylbiphenyl-like moiety and has been previously described to decompose under solar irradiation, yielding stable dihydrophenanthrene analogues. During photophysical characterization of rosuvastatin, only a long-lived transient at ca. 550 nm was observed and assigned to the primary photocyclization intermediate. Thus, the absence of detectable triplet-triplet absorption and the low yield of fluorescence rules out the role of the parent drug as an efficient sensitizer. In this context, the attention has been placed on the rosuvastatin main photoproduct (ppRSV). Indeed, the photobehavior of this dihydrophenanthrene-like compound presents the essential components needed for an efficient biomolecule photosensitizer i.e. (i) a high intersystem crossing quantum yield (Φ(ISC) = 0.8), (ii) a triplet excited state energy of ca. 67 kcal mol(-1), and (iii) a quantum yield of singlet oxygen formation (Φ(Δ)) of 0.3. Furthermore, laser flash photolysis studies revealed a triplet-triplet energy transfer from the triplet excited state of ppRSV to thymidine, leading to the formation of cyclobutane thymidine dimers, an important type of DNA lesion. Finally, tryptophan has been used as a probe to investigate the type I and/or type II character of ppRSV-mediated oxidation. In this way, both an electron transfer process giving rise to the tryptophanyl radical and a singlet oxygen mediated oxidation were observed. On the basis of the obtained results, rosuvastatin, through its major photoproduct ppRSV, should be considered as a potential sensitizer.
Collapse
Affiliation(s)
- Giacomo Nardi
- Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Avda. de los Naranjos s/n, Valencia, Spain
| | | | | | | |
Collapse
|