1
|
Keller DA, Bassan A, Amberg A, Burns Naas LA, Chambers J, Cross K, Hall F, Jahnke GD, Luniwal A, Manganelli S, Mestres J, Mihalchik-Burhans AL, Woolley D, Tice RR. In silico approaches in carcinogenicity hazard assessment: case study of pregabalin, a nongenotoxic mouse carcinogen. FRONTIERS IN TOXICOLOGY 2023; 5:1234498. [PMID: 38026843 PMCID: PMC10679394 DOI: 10.3389/ftox.2023.1234498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
In silico toxicology protocols are meant to support computationally-based assessments using principles that ensure that results can be generated, recorded, communicated, archived, and then evaluated in a uniform, consistent, and reproducible manner. We investigated the availability of in silico models to predict the carcinogenic potential of pregabalin using the ten key characteristics of carcinogens as a framework for organizing mechanistic studies. Pregabalin is a single-species carcinogen producing only one type of tumor, hemangiosarcomas in mice via a nongenotoxic mechanism. The overall goal of this exercise is to test the ability of in silico models to predict nongenotoxic carcinogenicity with pregabalin as a case study. The established mode of action (MOA) of pregabalin is triggered by tissue hypoxia, leading to oxidative stress (KC5), chronic inflammation (KC6), and increased cell proliferation (KC10) of endothelial cells. Of these KCs, in silico models are available only for selected endpoints in KC5, limiting the usefulness of computational tools in prediction of pregabalin carcinogenicity. KC1 (electrophilicity), KC2 (genotoxicity), and KC8 (receptor-mediated effects), for which predictive in silico models exist, do not play a role in this mode of action. Confidence in the overall assessments is considered to be medium to high for KCs 1, 2, 5, 6, 7 (immune system effects), 8, and 10 (cell proliferation), largely due to the high-quality experimental data. In order to move away from dependence on animal data, development of reliable in silico models for prediction of oxidative stress, chronic inflammation, immunosuppression, and cell proliferation will be critical for the ability to predict nongenotoxic compound carcinogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jordi Mestres
- Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
2
|
Itaya T, Sano M, Kajiwara I, Oshima Y, Kuramochi T, Kim J, Ichimaru Y, Kitajima O, Masamune A, Ijichi H, Ishii Y, Suzuki T. Mirogabalin improves cancer-associated pain but increases the risk of malignancy in mice with pancreatic cancer. Pain 2023; 164:1545-1554. [PMID: 36701124 DOI: 10.1097/j.pain.0000000000002852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/27/2023]
Abstract
ABSTRACT Mirogabalin, a selective voltage-gated calcium channel α2δ ligand, improves peripheral neuropathic pain; however, its effects on patients with cancers including pancreatic ductal adenocarcinoma (PDAC) remain unknown. We analyzed the effects of mirogabalin on a KPPC ( LSL-KrasG12D/+; Trp53flox/flox; Pdx-1cre/+ ) mouse model of PDAC. Six-week-old KPPC mice received oral mirogabalin (10 mg/kg/day) (n = 10) or vehicle water (n = 14) until the humane end point. Cancer-associated pain was evaluated using the scores of hunching and mouse grimace scale (MGS). Tumor status and plasma cytokine levels were determined using histopathological analysis and cytokine array, respectively. The effects of mirogabalin on the proliferative ability of PDAC cell lines were determined. The scores of the hunching and MGS improved after mirogabalin administration with a decrease in the plasma levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, and interferon-γ. Although no significant difference in the survival rate was observed, mirogabalin significantly increased pancreatic tumor size and proliferative index of Ki-67 and cyclins. Local arginase-1 + M2-like tumor-associated macrophages and CD31 + tumor blood vessels increased after mirogabalin administration. By contrast, the number of α-smooth muscle actin + cancer-associated fibroblasts, desmoplastic stroma, and CD8 + T cells decreased. Local myeloperoxidase + tumor-associated neutrophils and CD45R + B cells were unaltered. Mirogabalin enhanced the proliferative ability of PDAC cell lines with the upregulation of cyclins and cyclin-dependent kinases; however, it inhibited the potential of pancreatic stellate cells in vitro. Therefore, our results suggest that mirogabalin improves cancer-associated pain but enhances the proliferative potential of PDAC in vitro and in vivo.
Collapse
Affiliation(s)
- Tomoaki Itaya
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Sano
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Ichie Kajiwara
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukino Oshima
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoya Kuramochi
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Jinsuk Kim
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimi Ichimaru
- School of Pharmacy, Shonan University of Medical Sciences, Yokohama, Japan
| | - Osamu Kitajima
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Clinical Nutrition Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukimoto Ishii
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Abu-Rish EY, Mansour AT, Mansour HT, Dahabiyeh LA, Aleidi SM, Bustanji Y. Pregabalin inhibits in vivo and in vitro cytokine secretion and attenuates spleen inflammation in Lipopolysaccharide/Concanavalin A -induced murine models of inflammation. Sci Rep 2020; 10:4007. [PMID: 32132609 PMCID: PMC7055236 DOI: 10.1038/s41598-020-61006-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Immune system alteration has been implicated in the pathogenesis of chronic pain conditions, epilepsy and generalized anxiety disorder. Targeting cytokines has recently been proposed for the management of such conditions. Pregabalin (PGB) is an antiepileptic agent used for the management of these conditions. However, little is known about its immunomodulatory effects on cytokine secretion in vivo and in vitro. Hence, a mitogen (Lipopolysaccharide [LPS] or Concanavalin A [ConA])-induced murine model of inflammation was used to investigate the effect of PGB on in vivo and in vitro IL-1β, IL-6, TNF-α and IL-2 cytokine secretion using ELISA. In addition, PGB effect on spleen histology, as a lymphoid organ, was examined. Our results revealed that PGB significantly inhibited the secretion of ConA-induced IL-6 secretion, basal and ConA-induced TNF-α and IL-2 secretion in splenocytes in vitro. In vivo, PGB inhibited basal and LPS/ConA-induced IL-6 and TNF-α secretion in addition to LPS-induced IL-1β and ConA-induced IL-2 secretion. Moreover, PGB attenuated mitogen-induced inflammatory changes in the spleen. These findings provide an evidence of the anti-inflammatory properties of PGB on cytokine secretion and lymphoid organ inflammation. This might give insights into the role of PGB in the management of the inflammatory state in PGB-indicated conditions.
Collapse
Affiliation(s)
- Eman Y Abu-Rish
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan.
| | - Ahmad T Mansour
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Hebah T Mansour
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Shereen M Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Centre for Scientific Research, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Kakiuchi-Kiyota S, Obert LA, Crowell DM, Xia S, Roy MD, Coskran TM, Kreeger JM, Crabbs TA, Cohen SM, Cattley RC, Cook JC. Expression of Hematopoietic Stem and Endothelial Cell Markers in Canine Hemangiosarcoma. Toxicol Pathol 2020; 48:481-493. [PMID: 31918642 DOI: 10.1177/0192623319897539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several chemicals and pharmaceuticals increase the incidence of hemangiosarcomas (HSAs) in mice, but the relevance to humans is uncertain. Recently, canine HSAs were identified as a powerful tool for investigating the pathogenesis of human HSAs. To characterize the cellular phenotype of canine HSAs, we evaluated immunoreactivity and/or messenger RNA (mRNA) expression of markers for hematopoietic stem cells (HSCs), endothelial cells (ECs), a tumor suppressor protein, and a myeloid marker in canine HSAs. Neoplastic canine cells expressed EC markers and a myeloid marker, but expressed HSC markers less consistently. The canine tumor expression results were then compared to previously published immunoreactivity results for these markers in human and mouse HSAs. There are 2 noteworthy differences across species: (1) most human HSAs had HSC marker expression, indicating that they were comprised of tumor cells that were less differentiated than those in canine and mouse tumors; and (2) human and canine HSAs expressed a late-stage EC maturation marker, whereas mouse HSAs were negative, suggesting that human and canine tumors may retain greater differentiation potential than mouse tumors. These results indicate that HSA development is variable across species and that caution is necessary when discussing translation of carcinogenic risk from animal models to humans.
Collapse
Affiliation(s)
| | - Leslie A Obert
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, USA
| | | | - Shuhua Xia
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, USA
| | - Marc D Roy
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, USA
| | | | - John M Kreeger
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, USA
| | - Torrie A Crabbs
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, NE, USA
| | - Russell C Cattley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA. Kakiuchi-Kiyota is now with Safety Assessment, Genentech Inc., South San Francisco, CA, USA; Obert is now with Translational Medicine & Comparative Pathology, GlaxoSmithKline, Collegeville, PA, USA; Roy is now with Nonclinical Development, Sarepta Therapeutics, Cambridge, MA, USA
| | - Jon C Cook
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
5
|
Cook JC, Obert LA, Koza-Taylor P, Coskran TM, Opsahl AC, Ziemek D, Roy M, Qian J, Lawton MP, Criswell KA. From the Cover: Fenretinide, Troglitazone, and Elmiron Add to Weight of Evidence Support for Hemangiosarcoma Mode-of-Action From Studies in Mice. Toxicol Sci 2017; 161:58-75. [DOI: 10.1093/toxsci/kfx195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Wegner CD, Goodwin A, Cook JC, Allamneni K, Sohn J, McVean M. Why Do Promising Therapies Stall in Development and How Can We Move Them Forward? Int J Toxicol 2017; 36:340-349. [PMID: 28578602 DOI: 10.1177/1091581817709773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There are many reasons that molecules fail to progress to market and various principles of risk-benefit decisions that can help drive the molecule through development. This symposium included discussions on global strategies involved in pushing promising molecules to market, what to do when a molecule stalls in its progress to market, and options for rescuing the molecule and pushing it forward again. Innovative partnerships that bring stalled drugs back into clinical development were also addressed. A regulatory perspective on common reasons for a molecule to fail in its forward progress was presented. In addition, situations arise when a third-party advisory committee can provide input to help overcome issues identified by a regulatory agency. Using examples from the private and public domain, presentations centered on how to repurpose a molecule and when more science is needed.
Collapse
Affiliation(s)
- Craig D Wegner
- 1 AstraZeneca Pharmaceuticals, IMED Biotech Unit, Waltham, MA, USA
| | - Andrew Goodwin
- 2 US Food and Drug Administration, Silver Spring, MD, USA
| | - Jon C Cook
- 3 Pfizer Worldwide Research and Development, Groton, CT, USA
| | | | - Jane Sohn
- 2 US Food and Drug Administration, Silver Spring, MD, USA
| | - Maralee McVean
- 5 PreClinical Research Services, Inc, Fort Collins, CO, USA
| |
Collapse
|
7
|
Martin PL, Nnane IP, Branigan P, Louden C. Unexpected Toxicology Findings in Rats Dosed With an Antihuman IL-13 Monoclonal Antibody. Int J Toxicol 2015; 34:393-407. [PMID: 26124191 DOI: 10.1177/1091581815591840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin 13 (IL-13) is a type 2 helper T cytokine involved in allergic inflammation and immune responses to parasites. CNTO5825 is an antihuman IL-13 monoclonal antibody that inhibits the pharmacological activity of human, cynomolgus monkey, and rat IL-13. Repeated dose toxicology studies of 1- to 6-month duration were conducted in both rats and monkeys at doses of 20 to 100 mg/kg/wk. A decrease in the T cell-dependent antibody response to Keyhole Limpet Hemocyanin immunization was observed in monkeys but not in rats. In the 6-month rat study, there was a 2.2-fold increase in eosinophils in males at 3 and 6 months that was reversible. At necropsy (main and 4-month recovery), rats from control and CNTO5825-dosed groups were found to have pin worms, which may have contributed to the elevations in eosinophil. Testicular toxicity (dilatation of seminiferous tubules, atrophy, and degeneration of the germinal epithelium) was observed in 2 rats at 20 mg/kg and in 5 rats at 100 mg/kg (main and recovery). Brain lesions (unilateral focal accumulation of cells in the white matter of the cerebral cortex) were observed in 2 rats at 100 mg/kg, and vascular neoplasms (1 fatal multicentric hemangiosarcoma and 1 benign hemangioma) were observed at 100 mg/kg/wk. Overall, these studies show that CNTO5825 was without toxicity when administered to rats for up to 6 weeks and to monkeys for up to 6 months. However, when administered to rats for 6 months, a number of seemingly unrelated events occurred that could not be clearly linked to CNTO5825 administration, inhibition of IL-13, or to the immunological status of the animals.
Collapse
Affiliation(s)
| | - Ivo P Nnane
- Janssen Research and Development Inc, Spring House, PA, USA
| | | | - Calvert Louden
- Janssen Research and Development Inc, Spring House, PA, USA
| |
Collapse
|
8
|
Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 2014; 12:44-56. [PMID: 24533015 PMCID: PMC3915349 DOI: 10.2174/1570159x1201140117162802] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 12/13/2022] Open
Abstract
Pregabalin is an antagonist of voltage gated Ca2+ channels and specifically binds to alpha-2-delta subunit to produce antiepileptic and analgesic actions. It successfully alleviates the symptoms of various types of neuropathic pain and presents itself as a first line therapeutic agent with remarkable safety and efficacy. Preclinical studies in various animal models of neuropathic pain have shown its effectiveness in treating the symptoms like allodynia and hyperalgesia. Clinical studies in different age groups and in different types of neuropathic pain (peripheral diabetic neuropathy, fibromyalgia, post-herpetic neuralgia, cancer chemotherapy-induced neuropathic pain) have projected it as the most effective agent either as monotherapy or in combined regimens in terms of cost effectiveness, tolerability and overall improvement in neuropathic pain states. Preclinical studies employing pregabalin in different neuropathic pain models have explored various molecular targets and the signaling systems including Ca2+ channel-mediated neurotransmitter release, activation of excitatory amino acid transporters (EAATs), potassium channels and inhibition of pathways involving inflammatory mediators. The present review summarizes the important aspects of pregabalin as analgesic in preclinical and clinical studies as well as focuses on the possible mechanisms.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
9
|
Lee SK, Dawson J, Lee JA, Osman G, Levitin MO, Guzel RM, Djamgoz MB. Management of cancer pain: 1. Wider implications of orthodox analgesics. Int J Gen Med 2014; 7:49-58. [PMID: 24470767 PMCID: PMC3891517 DOI: 10.2147/ijgm.s42187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, the first of two parts, we first provide an overview of the orthodox analgesics used commonly against cancer pain. Then, we examine in more detail the emerging evidence for the potential impact of analgesic use on cancer risk and disease progression. Increasing findings suggest that long-term use of nonsteroidal anti-inflammatory drugs, particularly aspirin, may reduce cancer occurrence. However, acetaminophen may raise the risk of some hematological malignancies. Drugs acting upon receptors of gamma-aminobutyric acid (GABA) and GABA “mimetics” (eg, gabapentin) appear generally safe for cancer patients, but there is some evidence of potential carcinogenicity. Some barbiturates appear to slightly raise cancer risks and can affect cancer cell behavior in vitro. For cannabis, studies suggest an increased risk of squamous cell carcinoma of the tongue, larynx, and possibly lung. Morphine may stimulate human microvascular endothelial cell proliferation and angiogenesis; it is not clear whether this might cause harm or produce benefit. The opioid, fentanyl, may promote growth in some tumor cell lines. Opium itself is an emerging risk factor for gastric adenocarcinoma and possibly cancers of the esophagus, bladder, larynx, and lung. It is concluded that analgesics currently prescribed for cancer pain can significantly affect the cancer process itself. More futuristically, several ion channels are being targeted with novel analgesics, but many of these are also involved in primary and/or secondary tumorigenesis. Further studies are needed to elucidate possible cellular and molecular effects of orthodox analgesics and their possible long-term impact, both positive and negative, and thus enable the best possible clinical gain for cancer patients.
Collapse
Affiliation(s)
| | - Jill Dawson
- Healthcare Communications Consultancy, Danville, CA, USA
| | - Jack A Lee
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Gizem Osman
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Maria O Levitin
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, Imperial College London, London, UK
| | - Refika Mine Guzel
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, Imperial College London, London, UK
| | - Mustafa Ba Djamgoz
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, Imperial College London, London, UK ; Cyprus International University, Biotechnology Research Centre, Haspolat, North Cyprus, Mersin, Turkey
| |
Collapse
|
10
|
Baldwin DS, Ajel K, Masdrakis VG, Nowak M, Rafiq R. Pregabalin for the treatment of generalized anxiety disorder: an update. Neuropsychiatr Dis Treat 2013; 9:883-92. [PMID: 23836974 PMCID: PMC3699256 DOI: 10.2147/ndt.s36453] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A PREVIOUS REVIEW SUMMARIZED WHAT WAS THEN KNOWN ABOUT THE POTENTIAL ROLE OF PREGABALIN IN THE TREATMENT OF PATIENTS WITH GENERALIZED ANXIETY DISORDER (GAD): this review provides an update on its pharmacological properties and presumed mechanism of action, the liability for abuse, and efficacy and tolerability in patients with GAD. Pregabalin has a similar molecular structure to the inhibitory neurotransmitter gamma amino butyric acid (GABA) but its mechanism of action does not appear to be mediated through effects on GABA. Instead, its anxiolytic effects may arise through high-affinity binding to the alpha-2-delta sub-unit of the P/Q type voltage-gated calcium channel in "over-excited" presynaptic neurons, thereby reducing the release of excitatory neurotransmitters such as glutamate. The findings of randomized controlled trials and meta-analyses together indicate that pregabalin is efficacious in both acute treatment and relapse prevention in GAD, with some evidence of an early onset of effect, and broad efficacy in reducing the severity of psychological and physical symptoms of anxiety. It also has efficacy as an augmenting agent after non-response to antidepressant treatment in GAD. Continuing vigilance is needed in assessing its potential abuse liability but the tolerability profile of pregabalin may confer some advantages over other pharmacological treatments in the short term for treatment in patients with GAD.
Collapse
Affiliation(s)
- David S Baldwin
- Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- Southern Health NHS Foundation Trust, Southampton, UK
| | - Khalil Ajel
- Southern Health NHS Foundation Trust, Southampton, UK
| | - Vasilios G Masdrakis
- First Department of Psychiatry, Eginition Hospital, Athens University Medical School, Athens, Greece
| | - Magda Nowak
- Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rizwan Rafiq
- Southern Health NHS Foundation Trust, Southampton, UK
| |
Collapse
|
11
|
Criswell KA, Cook JC, Morse D, Lawton M, Somps C, Obert L, Roy M, Sokolowski S, Koza-Taylor P, Colangelo J, Navetta K, Brady J, Pegg D, Wojcinski Z, Rahbari R, Duddy S, Anderson T. Pregabalin Induces Hepatic Hypoxia and Increases EndothelialCell Proliferation in Mice, a Process Inhibited by DietaryVitamin E Supplementation. Toxicol Sci 2012; 128:42-56. [DOI: 10.1093/toxsci/kfs148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Pegg D, Bleavins M, Herman J, Wojcinski Z, Graziano M, Henck J, Criswell KA, Anderson T, Duddy S. Hemangiosarcoma in mice administered pregabalin: analysis of genotoxicity, tumor incidence, and tumor genetics. Toxicol Sci 2012; 128:9-21. [PMID: 22539615 DOI: 10.1093/toxsci/kfs146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pregabalin, (S)-3-(aminomethyl)-5-methylhexanoic acid, binds with high affinity to the α(2)δ subunit of voltage-gated calcium channels and exerts analgesic, anxiolytic, and antiseizure activities. Two-year carcinogenicity studies were completed in B6C3F1 and CD-1 mice and two separate studies in Wistar rats. Doses in mice were 200, 1000, and 5000 mg/kg/day, with systemic exposures (AUC(0-24 h)) up to 31 times the mean exposure in humans, given the maximum recommended clinical dose. In rats, doses were 50, 150, and 450 mg/kg/day in males and 100, 300, and 900 mg/kg/day in females; systemic exposures up to 24 times were achieved in clinical trials. In both strains of mice, pregabalin treatment was associated with an increased incidence of hemangiosarcoma primarily in liver, spleen, and bone marrow. The incidence of hemangiosarcoma was higher in B6C3F1 mice than in CD-1 mice, consistent with its spontaneous incidence. Pregabalin did not increase the incidence of any other tumor type in rats and was not genotoxic, based on an extensive battery of in vivo and in vitro tests in bacterial and mammalian systems. Thus, pregabalin is a single-species, single tumor-type, nongenotoxic mouse carcinogen. Hemangiosarcomas occurring in mice treated with pregabalin were genotypically distinct from hemangiosarcomas induced by genotoxic carcinogens in humans with respect to ras and p53 mutation patterns and were similar to spontaneous tumors. Furthermore, there was a strong association between pregabalin treatment and bone marrow changes in these studies in mice, suggesting a possible link between the effects observed in bone marrow and the increase in tumor incidence in pregabalin-treated mice.
Collapse
Affiliation(s)
- David Pegg
- Pfizer Worldwide Research and Development, Drug Safety Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | | | | | |
Collapse
|