1
|
Bassett J, Balasubramanian B, Clouse H, Trepakova E. High content imaging of relative ATP levels for mitochondrial toxicity prediction in human induced pluripotent stem cell derived cardiomyocytes. Toxicology 2025:154088. [PMID: 39971086 DOI: 10.1016/j.tox.2025.154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are increasingly being evaluated in assays aimed at better understanding potential cardiotoxic liability of newly developed therapeutic compounds. Disruption of mitochondria has been implicated in the mechanism of drug-induced cardiotoxicity of some compounds. Therefore, we have developed a high content imaging assay for the investigation of mitochondrial toxicity in hiPSC-CMs using ATP-Red, a fluorescent dye capable of detecting subcellular localization of relative ATP levels in living cells. We demonstrated time-dependent decreases in ATP-Red signal over 6h treatment with known mitochondrial toxicants antimycin (0.03, 0.1µM) or oligomycin (3, 10µM). Concentration-dependent decreases in ATP-Red signal with antimycin (0.001-0.3µM) and oligomycin (0.003-1µM) were rescued by restoring glycolysis through glucose supplementation. Decreased ATP levels were also identified in a selection of clinically available drugs with reported association with mitochondrial toxicity but absent in compounds with no known association with mitochondrial dysfunction. ATP measurements using the ATP-Red imaging assay were consistent with orthogonal measurements of whole cell ATP levels in lysed hiPSC-CMs following compound treatment. Similar findings were also obtained with measurement of mitochondrial membrane potential, except amiodarone which had no change despite decreased ATP levels. The developed high throughput imaging assay, assessing subcellular ATP dynamics, could provide mechanistic insights for tested compounds.
Collapse
Affiliation(s)
- John Bassett
- Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | | | - Holly Clouse
- Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | | |
Collapse
|
2
|
Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. Eur J Med Chem 2025; 283:117170. [PMID: 39700874 DOI: 10.1016/j.ejmech.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders. Several in vivo and in vitro studies have confirmed that PPARs play a neuroprotective role by regulating multiple pathological mechanisms. Several selective PPAR ligands, such as thiazolidinediones and fibrates, have been approved as pharmacological agonists. Nevertheless, PPAR agonists cause a variety of adverse effects. Some natural PPAR agonists, including wogonin, bergenin, jujuboside A, asperosaponin VI, monascin, and magnolol, have been introduced as safe agonists, as evidenced by clinical or preclinical experiments. This review summarizes the effects of phytochemicals on PPAR receptors in treating various neurological disorders. Further, it summarizes recent advances in phytochemicals as potential, safe, and promising PPAR agonists to provide insights into understanding the PPAR-dependent and independent cascades mediated by phytochemicals. The phytochemicals exhibited potential for treating neurological disorders by inhibiting neuroinflammation, exerting anti-oxidative stress and anti-apoptotic activities, promoting autophagy, preventing demyelination, and reducing brain edema and neurotoxicity. This review presents data that will help clarify the potential mechanisms by which phytochemicals act as pharmacological agonists of PPARs in the treatment of neurological disorders. It also provides insights into developing new drugs, highlighting phytochemicals as potential, safe, and promising PPAR agonists. Additionally, this review aims to enhance understanding of both PPAR-dependent and independent pathways mediated by phytochemicals.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Dong Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Malicka A, Ali A, MacCannell ADV, Roberts LD. Brown and beige adipose tissue-derived metabokine and lipokine inter-organ signalling in health and disease. Exp Physiol 2024. [PMID: 39591977 DOI: 10.1113/ep092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Adipose tissue has an established endocrine function through the secretion of adipokines. However, a role for bioactive metabolites and lipids, termed metabokines and lipokines, is emerging in adipose tissue-mediated autocrine, paracrine and endocrine signalling and inter-organ communication. Traditionally seen as passive entities, metabolites are now recognized for their active roles in regulating cellular signalling and local and systemic metabolism. Distinct from white adipose tissue, specific endocrine functions have been attributed to thermogenic brown and beige adipose tissues. Brown and beige adipose tissues have been identified as sources of metabokines and lipokines, which influence diverse metabolic pathways, such as fatty acid β-oxidation, mitochondrial function and glucose homeostasis, across a range of tissues, including skeletal muscle, adipose tissue and heart. This review explores the intricate signalling mechanisms of brown and beige adipose tissue-derived metabokines and lipokines, emphasizing their roles in maintaining metabolic homeostasis and their potential dysregulation in metabolic diseases. Furthermore, we discuss the therapeutic potential of targeting these pathways, proposing that precise modulation of metabokine receptors and transporters could offer superior specificity and efficacy in comparison to conventional approaches, such as β-adrenergic signalling-stimulated activation of brown adipose tissue thermogenesis. Understanding the complex interactions between adipokines, metabokines and lipokines is essential for developing a systems-level approach to new interventions for metabolic disorders, underscoring the need for continued research in this rapidly evolving field.
Collapse
Affiliation(s)
- Anna Malicka
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Aysha Ali
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Bauzá-Thorbrügge M, Amengual-Cladera E, Galmés-Pascual BM, Morán-Costoya A, Gianotti M, Valle A, Proenza AM, Lladó I. Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity. Nutrients 2024; 16:3063. [PMID: 39339665 PMCID: PMC11434741 DOI: 10.3390/nu16183063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity and type 2 diabetes mellitus are global public health issues. Although males show higher obesity and insulin resistance prevalence, current treatments often neglect sex-specific differences. White adipose tissue (WAT) is crucial in preventing lipotoxicity and inflammation and has become a key therapeutic target. Rosiglitazone (RSG), a potent PPARγ agonist, promotes healthy WAT growth and mitochondrial function through MitoNEET modulation. Recent RSG-based strategies specifically target white adipocytes, avoiding side effects. Our aim was to investigate whether sex-specific differences in the insulin-sensitizing effects of RSG exist on WAT during obesity and inflammation. We used Wistar rats of both sexes fed a high-fat diet (HFD, 22.5% fat content) for 16 weeks. Two weeks before sacrifice, a group of HFD-fed rats received RSG treatment (4 mg/kg of body weight per day) within the diet. HFD male rats showed greater insulin resistance, inflammation, mitochondrial dysfunction, and dyslipidemia than females. RSG had more pronounced effects in males, significantly improving insulin sensitivity, fat storage, mitochondrial function, and lipid handling in WAT while reducing ectopic fat deposition and enhancing adiponectin signaling in the liver. Our study suggests a significant sexual dimorphism in the anti-diabetic effects of RSG on WAT, correlating with the severity of metabolic dysfunction.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Emilia Amengual-Cladera
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Bel Maria Galmés-Pascual
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Andrea Morán-Costoya
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Magdalena Gianotti
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adamo Valle
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Maria Proenza
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Lladó
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Rosell-Hidalgo A, Bruhn C, Shardlow E, Barton R, Ryder S, Samatov T, Hackmann A, Aquino GR, Fernandes Dos Reis M, Galatenko V, Fritsch R, Dohrmann C, Walker PA. In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes. Expert Opin Drug Metab Toxicol 2024; 20:685-707. [PMID: 37995132 DOI: 10.1080/17425255.2023.2273378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.
Collapse
|
7
|
Tang X, Liu H, Rao R, Huang Y, Dong M, Xu M, Feng S, Shi X, Wang L, Wang Z, Zhou B. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:301-319. [PMID: 37864082 DOI: 10.1007/s11427-023-2369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.
Collapse
Affiliation(s)
- Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China
| | - Zengwu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Department of Epidemiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China.
| |
Collapse
|
8
|
Titus C, Hoque MT, Bendayan R. PPAR agonists for the treatment of neuroinflammatory diseases. Trends Pharmacol Sci 2024; 45:9-23. [PMID: 38065777 DOI: 10.1016/j.tips.2023.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
Peroxisome proliferator-activated receptors [PPARs; PPARα, PPARβ/δ (also known as PPARδ), and PPARγ] widely recognized for their important role in glucose/lipid homeostasis, have recently received significant attention due to their additional anti-inflammatory and neuroprotective effects. Several newly developed PPAR agonists have shown high selectivity for specific PPAR isoforms in vitro and in vivo, offering the potential to achieve desired therapeutic outcomes while reducing the risk of adverse effects. In this review, we discuss the latest preclinical and clinical studies of the activation of PPARs by synthetic, natural, and isoform-specific (full, partial, and dual) agonists for the treatment of neuroinflammatory diseases, including HIV-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and cerebral ischemia.
Collapse
Affiliation(s)
- Celene Titus
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
9
|
Zhao X, Ahn D, Nam G, Kwon J, Song S, Kang MJ, Ahn H, Chung SJ. Identification of Crocetin as a Dual Agonist of GPR40 and GPR120 Responsible for the Antidiabetic Effect of Saffron. Nutrients 2023; 15:4774. [PMID: 38004168 PMCID: PMC10675071 DOI: 10.3390/nu15224774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Crocin, a glycoside of crocetin, has been known as the principal component responsible for saffron's antidiabetic, anticancer, and anti-inflammatory effects. Crocetin, originating from the hydrolytic cleavage of crocin in biological systems, was subjected to ligand-based virtual screening in this investigation. Subsequent biochemical analysis unveiled crocetin, not crocin, as a novel dual GPR40 and GPR120 agonist, demonstrating a marked preference for GPR40 and GPR120 over peroxisome proliferator-activated receptors (PPAR)γ. This compound notably enhanced insulin and GLP-1 secretion from pancreatic β-cells and intestinal neuroendocrine cells, respectively, presenting a dual mechanism of action in glucose-lowering effects. Docking simulations showed that crocetin emulates the binding characteristics of natural ligands through hydrogen bonds and hydrophobic interactions, whereas crocin's hindered fit within the binding pocket is attributed to steric constraints. Collectively, for the first time, this study unveils crocetin as the true active component of saffron, functioning as a GPR40/120 agonist with potential implications in antidiabetic interventions.
Collapse
Affiliation(s)
- Xiaodi Zhao
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Gibeom Nam
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Jihee Kwon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Songyi Song
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Min Ji Kang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Hyejin Ahn
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
| | - Sang J. Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; (X.Z.); (G.N.); (J.K.); (S.S.); (M.J.K.); (H.A.)
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
10
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Recinella L, De Filippis B, Libero ML, Ammazzalorso A, Chiavaroli A, Orlando G, Ferrante C, Giampietro L, Veschi S, Cama A, Mannino F, Gasparo I, Bitto A, Amoroso R, Brunetti L, Leone S. Anti-Inflammatory, Antioxidant, and WAT/BAT-Conversion Stimulation Induced by Novel PPAR Ligands: Results from Ex Vivo and In Vitro Studies. Pharmaceuticals (Basel) 2023; 16:346. [PMID: 36986448 PMCID: PMC10056895 DOI: 10.3390/ph16030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Activation of peroxisome proliferator-activated receptors (PPARs) not only regulates multiple metabolic pathways, but mediates various biological effects related to inflammation and oxidative stress. We investigated the effects of four new PPAR ligands containing a fibrate scaffold-the PPAR agonists (1a (αEC50 1.0 μM) and 1b (γEC50 0.012 μM)) and antagonists (2a (αIC50 6.5 μM) and 2b (αIC50 0.98 μM, with a weak antagonist activity on γ isoform))-on proinflammatory and oxidative stress biomarkers. The PPAR ligands 1a-b and 2a-b (0.1-10 μM) were tested on isolated liver specimens treated with lipopolysaccharide (LPS), and the levels of lactate dehydrogenase (LDH), prostaglandin (PG) E2, and 8-iso-PGF2α were measured. The effects of these compounds on the gene expression of the adipose tissue markers of browning, PPARα, and PPARγ, in white adipocytes, were evaluated as well. We found a significant reduction in LPS-induced LDH, PGE2, and 8-iso-PGF2α levels after 1a treatment. On the other hand, 1b decreased LPS-induced LDH activity. Compared to the control, 1a stimulated uncoupling protein 1 (UCP1), PR-(PRD1-BF1-RIZ1 homologous) domain containing 16 (PRDM16), deiodinase type II (DIO2), and PPARα and PPARγ gene expression, in 3T3-L1 cells. Similarly, 1b increased UCP1, DIO2, and PPARγ gene expression. 2a-b caused a reduction in the gene expression of UCP1, PRDM16, and DIO2 when tested at 10 μM. In addition, 2a-b significantly decreased PPARα gene expression. A significant reduction in PPARγ gene expression was also found after 2b treatment. The novel PPARα agonist 1a might be a promising lead compound and represents a valuable pharmacological tool for further assessment. The PPARγ agonist 1b could play a minor role in the regulation of inflammatory pathways.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | | | | | | | | | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | | | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Irene Gasparo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University, 66100 Chieti, Italy
| |
Collapse
|
13
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
14
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
15
|
Spetz MR, Isely C, Gower RM. Effect of fabrication parameters on morphology and drug loading of polymer particles for rosiglitazone delivery. J Drug Deliv Sci Technol 2021; 65:S1773-2247(21)00352-X. [PMID: 35096148 PMCID: PMC8793769 DOI: 10.1016/j.jddst.2021.102672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the past several decades, drug-encapsulated polymer particles have been investigated as locally-delivered, long-acting therapies. The most common method of producing such particles is the oil in water solvent extraction technique. Using this technique, we produced poly(lactide-co-glycolide) (PLG) microparticles encapsulating rosiglitazone, a small molecule anti-diabetic drug. We investigated the impact of modulating fabrication parameters, including choice of organic solvent, concentration of polymer, and speed of homogenization and centrifugation on particle morphology and drug loading. Additionally, we studied the ratio of air-water-interface area to the extraction bath volume, a previously unstudied fabrication parameter, and its impact on rosiglitazone loading when using dichloromethane as the organic solvent. Under the conditions tested, drug loading can be increased 5-fold by increasing this ratio, which may be achieved by simply selecting a larger extraction vessel. By changing the organic solvent from dichloromethane to ethyl acetate, we produced particles with 60% higher rosiglitazone loading. Interestingly, the particles made with ethyl acetate appeared phase dark under light microscopy suggesting the presence of internal pores. By increasing the proportion of organic phase in the emulsion we eliminated the aberrant morphology but did not alter drug loading. As a final step in the development of the particles, we established that rosiglitazone remained stable throughout the encapsulation process and its subsequent release from particles by demonstrating that rosiglitazone loaded particles enhanced adipocyte lipid storage and adiponectin secretion. Taken together, for this system, air-water-interface area to volume ratio of the extraction bath and organic solvent both arose as key parameters in maximizing rosiglitazone loading in PLG microparticles. This study of how fabrication parameters impact drug loading and particle morphology may be useful in other investigations to encapsulate small molecules in polymer particles for controlled release applications.
Collapse
Affiliation(s)
- Madeline R. Spetz
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
16
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|
18
|
LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9815039. [PMID: 33014281 PMCID: PMC7519988 DOI: 10.1155/2020/9815039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
Aims We aimed to investigate whether LCZ696 protects against pathological cardiac hypertrophy by regulating the Sirt3/MnSOD pathway. Methods In vivo, we established a transverse aortic constriction animal model to establish pressure overload-induced heart failure. Subsequently, the mice were given LCZ696 by oral gavage for 4 weeks. After that, the mice underwent transthoracic echocardiography before they were sacrificed. In vitro, we introduced phenylephrine to prime neonatal rat cardiomyocytes and small-interfering RNA to knock down Sirt3 expression. Results Pathological hypertrophic stimuli caused cardiac hypertrophy and fibrosis and reduced the expression levels of Sirt3 and MnSOD. LCZ696 alleviated the accumulation of oxidative reactive oxygen species (ROS) and cardiomyocyte apoptosis. Furthermore, Sirt3 deficiency abolished the protective effect of LCZ696 on cardiomyocyte hypertrophy, indicating that LCZ696 induced the upregulation of MnSOD and phosphorylation of AMPK through a Sirt3-dependent pathway. Conclusions LCZ696 may mitigate myocardium oxidative stress and apoptosis in pressure overload-induced heart failure by regulating the Sirt3/MnSOD pathway.
Collapse
|
19
|
Pleiotropic effects of anti-diabetic drugs: A comprehensive review. Eur J Pharmacol 2020; 884:173349. [PMID: 32650008 DOI: 10.1016/j.ejphar.2020.173349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus characterized by hyperglycaemia presents an array of comorbidities such as cardiovascular and renal failure, dyslipidemia, and cognitive impairments. Populations above the age of 60 are in an urgent need of effective therapies to deal with the complications associated with diabetes mellitus. Widely used anti-diabetic drugs have good safety profiles and multiple reports indicate their pleiotropic effects in diabetic patients or models. This review has been written with the objective of identifying the widely-marketed anti-diabetic drugs which can be efficiently repurposed for the treatment of other diseases or disorders. It is an updated, comprehensive review, describing the protective role of various classes of anti-diabetic drugs in mitigating the macro and micro vascular complications of diabetes mellitus, and differentiating these drugs on the basis of their mode of action. Notably, metformin, the anti-diabetic drug most commonly explored for cancer therapy, has also exhibited some antimicrobial effects. Unlike class specific effects, few instances of drug specific effects in managing cardiovascular complications have also been reported. A major drawback is that the pleiotropic effects of anti-diabetic drugs have been mostly investigated only in diabetic patients. Thus, for effective repurposing, more clinical trials devoted to analyse the effects of anti-diabetic drugs in patients irrespective of their diabetic condition, are required.
Collapse
|
20
|
Myotubularin-related protein 7 activates peroxisome proliferator-activated receptor-gamma. Oncogenesis 2020; 9:59. [PMID: 32522977 PMCID: PMC7286916 DOI: 10.1038/s41389-020-0238-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor drugable by agonists approved for treatment of type 2 diabetes, but also inhibits carcinogenesis and cell proliferation in vivo. Activating mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene mitigate these beneficial effects by promoting a negative feedback-loop comprising extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-activated kinase kinase 1/2 (MEK1/2)-dependent inactivation of PPARγ. To overcome this inhibitory mechanism, we searched for novel post-translational regulators of PPARγ. Phosphoinositide phosphatase Myotubularin-Related-Protein-7 (MTMR7) was identified as cytosolic interaction partner of PPARγ. Synthetic peptides were designed resembling the regulatory coiled-coil (CC) domain of MTMR7, and their activities studied in human cancer cell lines and C57BL6/J mice. MTMR7 formed a complex with PPARγ and increased its transcriptional activity by inhibiting ERK1/2-dependent phosphorylation of PPARγ. MTMR7-CC peptides mimicked PPARγ-activation in vitro and in vivo due to LXXLL motifs in the CC domain. Molecular dynamics simulations and docking predicted that peptides interact with the steroid receptor coactivator 1 (SRC1)-binding site of PPARγ. Thus, MTMR7 is a positive regulator of PPARγ, and its mimicry by synthetic peptides overcomes inhibitory mechanisms active in cancer cells possibly contributing to the failure of clinical studies targeting PPARγ.
Collapse
|
21
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
22
|
Xi Y, Zhang Y, Zhu S, Luo Y, Xu P, Huang Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020; 9:cells9020352. [PMID: 32028670 PMCID: PMC7072218 DOI: 10.3390/cells9020352] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.
Collapse
Affiliation(s)
- Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yunhui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuping Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| |
Collapse
|
23
|
Riess ML, Elorbany R, Weihrauch D, Stowe DF, Camara AK. PPARγ-Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells 2020; 9:cells9010252. [PMID: 31968546 PMCID: PMC7017211 DOI: 10.3390/cells9010252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of anti-diabetic thiazolidinediones (TZDs) on contributing to heart failure and cardiac ischemia/reperfusion (IR) injury is controversial. In this study we investigated the effect of select TZDs on myocardial and mitochondrial function in Brown Norway rat isolated hearts. In a first set of experiments, the TZD rosiglitazone was given acutely before global myocardial IR, and pre- and post-IR function and infarct size were assessed. In a second set of experiments, different concentrations of rosiglitazone and pioglitazone were administered in the presence or absence of the specific PPARγ antagonist GW9662, and their effects on the mitochondrial redox state were measured by online NADH and FAD autofluorescence. The administration of rosiglitazone did not significantly affect myocardial function except for transiently increasing coronary flow, but it increased IR injury compared to the control hearts. Both TZDs resulted in dose-dependent, reversible increases in mitochondrial oxidation which was not attenuated by GW9662. Taken together, these data suggest that TZDs cause excessive mitochondrial uncoupling by a PPARγ-independent mechanism. Acute rosiglitazone administration before IR was associated with enhanced cardiac injury. If translated clinically, susceptible patients on PPARγ agonists may experience enhanced myocardial IR injury by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-0277; Fax: +1-(615)-343-3916
| | - Reem Elorbany
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
| | - David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. J Med Biochem 2019; 39:267-275. [PMID: 33746608 PMCID: PMC7955996 DOI: 10.2478/jomb-2019-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic syndrome, obesity and type 2 diabetes are metabolic disorders characterized by the insulin resistance and the impairment in the insulin secretion. Since impairment in the oxidative stress and adipocyte metabolism contribute to the formation of obesity and diabetes, targeting adipose tissue can be considered as an effective approach to fight against them. Rosiglitazone is used for treatment for patients with type 2 diabetes via inducing lipogenesis and transdifferentiation of white adipose tissue into brown adipose tissue. Since the development of such therapeutics is required to control the formation and function of brown fat cells, we aimed to reveal possible molecular mechanisms behind rosiglitazone induced biochemical changes in the adipose tissue. Methods Cells were expanded in the adipocyte culture medium supplemented with 5 µg/mL insulin following 2 days' induction. After those cells were treated with rosiglitazone 0, 0.13 mol/L and 10 µmol/L rosiglitazone for 48 hours and at 8th day, cells were collected and stored at -80 °C. Then the cells were used to evaluate antioxidant enzyme activities, mineral and trace element levels and fatty acid composition. Results Glucose-6-phosphate dehydrogenase and glutathione reductase significantly reduced in rosiglitazone-treated groups compared to the control. Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Cs, Ba and Pb were determined in the cell lysates via ICP-MS. Also, relative FAME content decreased in the rosiglitazone-treated groups compared to the control. Conclusions Rosiglitazone treatment at low doses showed promising results which may promote brown adipose tissue formation.
Collapse
|
25
|
Stem cell models as an in vitro model for predictive toxicology. Biochem J 2019; 476:1149-1158. [PMID: 30988136 PMCID: PMC6463389 DOI: 10.1042/bcj20170780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Adverse drug reactions (ADRs) are the unintended side effects of drugs. They are categorised as either predictable or unpredictable drug-induced injury and may be exhibited after a single or prolonged exposure to one or multiple compounds. Historically, toxicology studies rely heavily on animal models to understand and characterise the toxicity of novel compounds. However, animal models are imperfect proxies for human toxicity and there have been several high-profile cases of failure of animal models to predict human toxicity e.g. fialuridine, TGN1412 which highlight the need for improved predictive models of human toxicity. As a result, stem cell-derived models are under investigation as potential models for toxicity during early stages of drug development. Stem cells retain the genotype of the individual from which they were derived, offering the opportunity to model the reproducibility of rare phenotypes in vitro Differentiated 2D stem cell cultures have been investigated as models of hepato- and cardiotoxicity. However, insufficient maturity, particularly in the case of hepatocyte-like cells, means that their widespread use is not currently a feasible method to tackle the complex issues of off-target and often unpredictable toxicity of novel compounds. This review discusses the current state of the art for modelling clinically relevant toxicities, e.g. cardio- and hepatotoxicity, alongside the emerging need for modelling gastrointestinal toxicity and seeks to address whether stem cell technologies are a potential solution to increase the accuracy of ADR predictivity in humans.
Collapse
|
26
|
Li J, Shen X. Effect of rosiglitazone on inflammatory cytokines and oxidative stress after intensive insulin therapy in patients with newly diagnosed type 2 diabetes. Diabetol Metab Syndr 2019; 11:35. [PMID: 31073335 PMCID: PMC6499940 DOI: 10.1186/s13098-019-0432-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To evaluate the effect of insulin sensitizer on inflammatory cytokines and oxidative stress in patients with newly diagnosed type 2 diabetes mellitus (T2DM). METHODS After intensive insulin therapy, patients with newly diagnosed T2DM were continuously treated with either insulin sensitizer or insulin for 48 weeks, and then their inflammatory cytokine and oxidative stress levels were measured. RESULTS Tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, hypersensitive C reactive protein (hs-CRP), malondialdehyde (MDA), and 8-iso-prostaglandin F2α (8-iso-PGF2α) levels of the rosiglitazone (RSG) group and the rosiglitazone combined with metformin (RSG + metformin) group were significantly reduced after the treatments (P < 0.05). Hs-CRP, MDA, and 8-iso-PGF2α levels of the metformin group were significantly reduced after the treatments (P < 0.05). Superoxide dismutase (SOD) and total antioxidant capacity (TAC) were significantly increased after the treatments in all three groups (P < 0.05 and P < 0.01). CONCLUSION Early application of insulin sensitizers improved inflammation and oxidative stress in patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Juan Li
- Department of Emergency, Zhongshan Hospital Xiamen University, Xiamen, 361004 Fujian China
| | - Xingping Shen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, 361004 Fujian China
| |
Collapse
|
27
|
Wadley GD, Lamon S, Alexander SE, McMullen JR, Bernardo BC. Noncoding RNAs regulating cardiac muscle mass. J Appl Physiol (1985) 2018; 127:633-644. [PMID: 30571279 DOI: 10.1152/japplphysiol.00904.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) play roles in the development and homeostasis of nearly every tissue of the body, including the regulation of processes underlying heart growth. Cardiac hypertrophy can be classified as either physiological (beneficial heart growth) or pathological (detrimental heart growth), the latter of which results in impaired cardiac function and heart failure and is predictive of a higher incidence of death due to cardiovascular disease. Several miRNAs have a functional role in exercise-induced cardiac hypertrophy, while both miRNAs and lncRNAs are heavily involved in pathological heart growth and heart failure. The latter have the potential to act as an endogenous sponge RNA and interact with specific miRNAs to control cardiac hypertrophy, adding another level of complexity to our understanding of the regulation of cardiac muscle mass. In addition to tissue-specific effects, ncRNA-mediated tissue cross talk occurs via exosomes. In particular, miRNAs can be internalized in exosomes and secreted from various cardiac and vascular cell types to promote angiogenesis, as well as protection and repair of ischemic tissues. ncRNAs hold promising therapeutic potential to protect the heart against ischemic injury and aid in regeneration. Numerous preclinical studies have demonstrated the therapeutic potential of ncRNAs, specifically miRNAs, for the treatment of cardiovascular disease. Most of these studies employ antisense oligonucleotides to inhibit miRNAs of interest; however, off-target effects often limit their potential to be translated to the clinic. In this context, approaches using viral and nonviral delivery tools are promising means to provide targeted delivery in vivo.
Collapse
Affiliation(s)
- Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Sarah E Alexander
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Jönsson TJ, Schäfer HL, Herling AW, Brönstrup M. A metabolome-wide characterization of the diabetic phenotype in ZDF rats and its reversal by pioglitazone. PLoS One 2018; 13:e0207210. [PMID: 30481177 PMCID: PMC6258476 DOI: 10.1371/journal.pone.0207210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease associated with alterations in glucose, lipid and protein metabolism. In order to characterize the biochemical phenotype of the Zucker diabetic fatty (ZDF) rat, the most common animal model for the study of T2D, and the impact of the insulin sensitizer pioglitazone, a global, mass spectrometry-based analysis of the metabolome was conducted. Overall, 420 metabolites in serum, 443 in the liver and 603 in the intestine were identified at study end. In comparison to two control groups, obese diabetic ZDF rats showed characteristic metabolic signatures that included hyperglycemia, elevated β-oxidation, dyslipidemia—featured by an increase in saturated and monounsaturated fatty acids and a decrease of medium chain and of polyunsaturated fatty acids in serum–and decreased amino acid levels, consistent with their utilization in hepatic gluconeogenesis. A 13-week treatment with the PPARγ agonist pioglitazone reversed most of these signatures: Pioglitazone improved glycemic control and the fatty acid profile, elevated amino acid levels in the liver, but decreased branched chain amino acids in serum. The hitherto most comprehensive metabolic profiling study identified a biochemical blueprint for the ZDF diabetic model and captured the impact of genetic, nutritional and pharmacological perturbations. The in-depth characterization on the molecular level deepens the understanding and further validates the ZDF rat as a suitable preclinical model of diabetes in humans.
Collapse
Affiliation(s)
| | | | | | - Mark Brönstrup
- Helmholtz Centre for Infection Research and German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
29
|
Sohn JH, Kim JI, Jeon YG, Park J, Kim JB. Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis. Mol Cells 2018; 41:900-908. [PMID: 30145862 PMCID: PMC6199571 DOI: 10.14348/molcells.2018.0294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is closely associated with metabolic diseases such as type 2 diabetes, dyslipidemia, hypertension and atherosclerosis. Thiazolidinediones (TZDs) have been developed to ameliorate insulin resistance by activation of peroxisome proliferator-activated receptor (PPAR) γ. Although TZDs are synthetic ligands for PPARγ, metabolic outcomes of each TZD are different. Moreover, there are lack of head-to-head comparative studies among TZDs in the aspect of metabolic outcomes. In this study, we analyzed the effects of three TZDs, including lobeglitazone (Lobe), rosiglitazone (Rosi), and pioglitazone (Pio) on metabolic and thermogenic regulation. In adipocytes, Lobe more potently stimulated adipogenesis and insulin-dependent glucose uptake than Rosi and Pio. In the presence of pro-inflammatory stimuli, Lobe efficiently suppressed expressions of pro-inflammatory genes in macrophages and adipocytes. In obese and diabetic db/db mice, Lobe effectively promoted insulin-stimulated glucose uptake and suppressed pro-inflammatory responses in epididymal white adipose tissue (EAT), leading to improve glucose intolerance. Compared to other two TZDs, Lobe enhanced beige adipocyte formation and thermogenic gene expression in inguinal white adipose tissue (IAT) of lean mice, which would be attributable to cold-induced thermogenesis. Collectively, these comparison data suggest that Lobe could relieve insulin resistance and enhance thermogenesis at low-concentration conditions where Rosi and Pio are less effective.
Collapse
Affiliation(s)
- Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jong In Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
30
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
31
|
In vitro screening of cell bioenergetics to assess mitochondrial dysfunction in drug development. Toxicol In Vitro 2018; 52:374-383. [PMID: 30030051 DOI: 10.1016/j.tiv.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/28/2018] [Accepted: 07/15/2018] [Indexed: 12/17/2022]
Abstract
Drug-induced mitochondrial toxicity is considered as a common cellular mechanism that can induce a variety of organ toxicities. In the present manuscript, 17 in vitro mitochondrial toxic drugs, reported to induce Drug-Induced Liver Injury (DILI) and 6 non-mitochondrial toxic drugs (3 with DILI and 3 without DILI concern), were tested in HepG2 cells using a bioenergetics system. The 17 mitochondrial toxic drugs represent a wide variety of mitochondrial dysfunctions as well as DILI and include 4 pairs of drugs which are structurally related but associated with different DILI concerns in human. Cell bioenergetics were measured using the XF96e analyzer which simultaneous monitor oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), indirect measurements of oxidative phosphorylation and glycolysis, respectively. OCR associated with ATP production, maximal respiration, proton leak and spare respiratory capacity, were also assessed. Duplicate experiments resulted in a sensitivity of 82% (14/17) and specificity of 83% (5/6). The addition of stressors improved specificity considerably. Cut-offs, statistics and rules are clearly discussed to facilitate the use of this assay for screening purposes. Overall, the authors consider that this assay should be part of the battery of safety screening assays at early stages of drug development.
Collapse
|
32
|
Nie JM, Li HF. Metformin in combination with rosiglitazone contribute to the increased serum adiponectin levels in people with type 2 diabetes mellitus. Exp Ther Med 2017; 14:2521-2526. [PMID: 28962190 PMCID: PMC5609299 DOI: 10.3892/etm.2017.4823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
To evaluate how metformin plus rosiglitazone affect serum adiponectin levels in people suffering from type 2 diabetes mellitus (T2DM), 240 patients having T2DM were selected in this cohort study. Included subjects were randomly and equally separated into three subsets: i) Group A (rosiglitazone group); ii) group B (metformin group); and iii) group C (rosiglitazone + metformin group). Furthermore, meta-analysis of previous studies was performed by searching the general search engines and bibliographic databases. Compared with before treatment, the serum amount of adiponectin grew considerably in the three groups after treatment, and the levels in the group C was much greater than those of groups A and B (all P<0.05). Corresponding meta-analysis results suggested post-treatment serum adiponectin level to be greater than pretreatment level in T2DM patients (P<0.001). Further subgroup analyses indicated that combination therapy of metformin and rosiglitazone may increase the amount of serum adiponectin in T2DM sufferers among the majority subgroups (all P<0.05). The combination of metformin and rosiglitazone treatment increased serum adiponectin levels, suggesting that metformin plus rosiglitazone therapy is a suitable choice to treat T2DM.
Collapse
Affiliation(s)
- Jie-Ming Nie
- Department of General Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Hai-Feng Li
- Department of Pharmaceutical Analysis, ALK-Abello A/S Guangzhou Office, Guangzhou, Guangdong 510620, P.R. China
| |
Collapse
|
33
|
Lu HF, Leong MF, Lim TC, Chua YP, Lim JK, Du C, Wan ACA. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening. Biofabrication 2017; 9:025011. [DOI: 10.1088/1758-5090/aa6c3a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Zhong CB, Chen X, Zhou XY, Wang XB. The Role of Peroxisome Proliferator-Activated Receptor γ in Mediating Cardioprotection Against Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2017; 23:46-56. [PMID: 28466688 DOI: 10.1177/1074248417707049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease resulting in high rates of morbidity and mortality. Although advances have been made in restoring myocardial perfusion in ischemic areas, decreases in cardiomyocyte death and infarct size are still limited, attributing to myocardial ischemia/reperfusion (I/R) injury. It is necessary to develop therapies to restrict myocardial I/R injury and protect cardiomyocytes against further damage after MI. Many studies have suggested that peroxisome proliferator-activated receptor γ (PPARγ), a ligand-inducible nuclear receptor that predominantly regulates glucose and lipid metabolism, is a promising therapeutic target for ameliorating myocardial I/R injury. Thus, this review focuses on the role of PPARγ in cardioprotection during myocardial I/R. The cardioprotective effects of PPARγ, including attenuating oxidative stress, inhibiting inflammatory responses, improving glucose and lipid metabolism, and antagonizing apoptosis, are described. Additionally, the underlying mechanisms of cardioprotective effects of PPARγ, such as regulating the expression of target genes, influencing other transcription factors, and modulating kinase signaling pathways, are further discussed.
Collapse
Affiliation(s)
- Chong-Bin Zhong
- 1 The Second Clinical Institute of Southern Medical University, Guangzhou, China
| | - Xi Chen
- 1 The Second Clinical Institute of Southern Medical University, Guangzhou, China
| | - Xu-Yue Zhou
- 1 The Second Clinical Institute of Southern Medical University, Guangzhou, China
| | - Xian-Bao Wang
- 2 Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, Gu Y, Wu T, Peterson KL, Huang HD, Chen J, Wang N. Adipocyte-specific loss of PPAR γ attenuates cardiac hypertrophy. JCI Insight 2016; 1:e89908. [PMID: 27734035 DOI: 10.1172/jci.insight.89908] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a key endocrine organ that governs systemic homeostasis. PPARγ is a master regulator of adipose tissue signaling that plays an essential role in insulin sensitivity, making it an important therapeutic target. The selective PPARγ agonist rosiglitazone (RSG) has been used to treat diabetes. However, adverse cardiovascular effects have seriously hindered its clinical application. Experimental models have revealed that PPARγ activation increases cardiac hypertrophy. RSG stimulates cardiac hypertrophy and oxidative stress in cardiomyocyte-specific PPARγ knockout mice, implying that RSG might stimulate cardiac hypertrophy independently of cardiomyocyte PPARγ. However, candidate cell types responsible for RSG-induced cardiomyocyte hypertrophy remain unexplored. Utilizing cocultures of adipocytes and cardiomyocytes, we found that stimulation of PPARγ signaling in adipocytes increased miR-200a expression and secretion. Delivery of miR-200a in adipocyte-derived exosomes to cardiomyocytes resulted in decreased TSC1 and subsequent mTOR activation, leading to cardiomyocyte hypertrophy. Treatment with an antagomir to miR-200a blunted this hypertrophic response in cardiomyocytes. In vivo, specific ablation of PPARγ in adipocytes was sufficient to blunt hypertrophy induced by RSG treatment. By delineating mechanisms by which RSG elicits cardiac hypertrophy, we have identified pathways that mediate the crosstalk between adipocytes and cardiomyocytes to regulate cardiac remodeling.
Collapse
Affiliation(s)
- Xi Fang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China.,Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Matthew J Stroud
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Kunfu Ouyang
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Li Fang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Jianlin Zhang
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Nancy D Dalton
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Yusu Gu
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Tongbin Wu
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Kirk L Peterson
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Ju Chen
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China.,The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
37
|
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168:75-97. [PMID: 27598860 DOI: 10.1016/j.pharmthera.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Joseph Winaver
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel.
| |
Collapse
|
38
|
Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H, Liu C, Shukla P, Sayed N, Churko JM, Shao N, Woo NA, Chao AS, Gold JD, Karakikes I, Snyder MP, Wu JC. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell 2016; 19:311-25. [PMID: 27545504 PMCID: PMC5087997 DOI: 10.1016/j.stem.2016.07.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023]
Abstract
Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kun-Hsing Yu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John H Ahrens
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole A Woo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander S Chao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph D Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res 2016; 2016:7614270. [PMID: 27313601 PMCID: PMC4893583 DOI: 10.1155/2016/7614270] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
The present review summarizes the current advances in the biochemical and physiological aspects in the treatment of type 2 diabetes mellitus (DM2) with thiazolidinediones (TZDs). DM2 is a metabolic disorder characterized by hyperglycemia, triggering the abnormal activation of physiological pathways such as glucose autooxidation, polyol's pathway, formation of advance glycation end (AGE) products, and glycolysis, leading to the overproduction of reactive oxygen species (ROS) and proinflammatory cytokines, which are responsible for the micro- and macrovascular complications of the disease. The treatment of DM2 has been directed toward the reduction of hyperglycemia using different drugs such as insulin sensitizers, as the case of TZDs, which are able to lower blood glucose levels and circulating triglycerides by binding to the nuclear peroxisome proliferator-activated receptor gamma (PPARγ) as full agonists. When TZDs interact with PPARγ, the receptor regulates the transcription of different genes involved in glucose homeostasis, insulin resistance, and adipogenesis. However, TZDs exhibit some adverse effects such as fluid retention, weight gain, hepatotoxicity, plasma-volume expansion, hemodilution, edema, bone fractures, and congestive heart failure, which limits their use in DM2 patients.
Collapse
|
40
|
Butterick TA, Hocum Stone L, Duffy C, Holley C, Cabrera JA, Crampton M, Ward HB, Kelly RF, McFalls EO. Pioglitazone increases PGC1-α signaling within chronically ischemic myocardium. Basic Res Cardiol 2016; 111:37. [PMID: 27138931 DOI: 10.1007/s00395-016-0555-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR)-γ drug pioglitazone (PIO) has been shown to protect tissue against oxidant stress. In a swine model of chronic myocardial ischemia, we tested whether PIO increases PGC1-α signaling and the expression of mitochondrial antioxidant peptides. Eighteen pigs underwent a thoracotomy with placement of a fixed constrictor around the LAD artery. At 8 weeks, diet was supplemented with either PIO (3 mg/kg) or placebo for 4 weeks. Regional myocardial function and blood flow were determined at the time of the terminal study. PGC1-α expression was quantified from nuclear membranes by gels and respiration, oxidant stress markers and proteomics by iTRAQ were determined from isolated mitochondria. In the chronically ischemic LAD region, wall thickening from the PIO and control groups was 42 ± 6 and 45 ± 5 %, respectively (NS) with no intergroup differences in basal blood flow (0.72 ± 0.04 versus 0.74 ± 0.04 ml/min g, respectively; NS). In the PIO group, the expression of nuclear bound PGC1-α was higher (11.3 ± 2.6 versus 4.4 ± 1.4 AU; P < 0.05) and the content of mitochondrial antioxidant peptides including superoxide dismutase 2, aldose reductase, glutathione S-transferase and thioredoxin reductase were greater than controls. Although isolated mitochondria from the PIO group showed lower state 3 respiration (102 ± 13 versus 161 ± 22 nmol/min mg; P < 0.05), no differences in oxidant stress were noted by protein carbonyl (1.7 ± 0.7 versus 1.1 ± 0.1 nmol/mg). Chronic pioglitazone does not reduce regional myocardial blood flow or function in a swine model of chronic myocardial ischemia, but may have an important role in increasing expression of antioxidant proteins through PGC1-α signaling.
Collapse
Affiliation(s)
- Tammy A Butterick
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA.,Cardiology and Cardiothoracic Surgery Sections, Department of Nutrition, VA Medical Center, Minneapolis, USA.,Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, 55108, USA
| | - Laura Hocum Stone
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Cayla Duffy
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA.,Cardiology and Cardiothoracic Surgery Sections, Department of Nutrition, VA Medical Center, Minneapolis, USA
| | - Christopher Holley
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Jesús A Cabrera
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Melanie Crampton
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Herbert B Ward
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Rosemary F Kelly
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Edward O McFalls
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA. .,Department of Surgery, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
41
|
Bénit P, Schiff M, Cwerman-Thibault H, Corral-Debrinski M, Rustin P. Drug development for mitochondrial disease: recent progress, current challenges, and future prospects. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1117972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol 2015; 768:217-25. [DOI: 10.1016/j.ejphar.2015.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022]
|
43
|
Clements M, Millar V, Williams AS, Kalinka S. Bridging Functional and Structural Cardiotoxicity Assays Using Human Embryonic Stem Cell-Derived Cardiomyocytes for a More Comprehensive Risk Assessment. Toxicol Sci 2015; 148:241-60. [DOI: 10.1093/toxsci/kfv180] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
44
|
Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci Rep 2015; 5:9530. [PMID: 25827822 PMCID: PMC4381330 DOI: 10.1038/srep09530] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in the regulation of glucose homeostasis and lipid metabolism. However, current PPARγ-targeting drugs such as thiazolidinediones (TZDs) are associated with undesirable side effects. We identified a small molecular compound, F12016, as a selective PPARγ agonist by virtual screening, which showed moderate PPARγ agonistic activity and binding ability for PPARγ. F12016 did not activate other PPAR subtypes at 30 μM and selectively modulated PPARγ target gene expression. In diabetic KKAy mice, F12016 had insulin-sensitizing and glucose-lowering properties, and suppressed weight gain. In vitro, F12016 effectively increased glucose uptake and blocked cyclin-dependent kinase 5-mediated phosphorylation of PPARγ at Ser273, but slightly triggered adipogenesis and less inhibited osteoblastogenesis than rosiglitazone. Moreover, compared with the full agonist rosiglitazone, F12016 had a distinct group of coregulators and a different predicted binding mode for the PPARγ ligand-binding domain. A site mutation assay confirmed the key epitopes, especially Tyr473 in AF-2. In summary, our study shows that F12016 is a non-TZD, novel selective PPARγ agonist without the classical lipogenic side effects, which may provide a new structural strategy for designing PPARγ ligands with advantages over TZDs.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tingting Feng
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ningyu Zhu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Peng Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiaowan Han
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiao Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ni Li
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yongzhen Li
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
45
|
Abstract
Type 2 diabetes is caused by insulin resistance coupled with an inability to produce enough insulin to control blood glucose, and thiazolidinediones (TZDs) are the only current antidiabetic agents that function primarily by increasing insulin sensitivity. However, despite clear benefits in glycemic control, this class of drugs has recently fallen into disuse due to concerns over side effects and adverse events. Here we review the clinical data and attempt to balance the benefits and risks of TZD therapy. We also examine potential mechanisms of action for the beneficial and harmful effects of TZDs, mainly via agonism of the nuclear receptor PPARγ. Based on critical appraisal of both preclinical and clinical studies, we discuss the prospect of harnessing the insulin sensitizing effects of PPARγ for more effective, safe, and potentially personalized treatments of type 2 diabetes.
Collapse
Affiliation(s)
- Raymond E Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric R Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|