1
|
Yu Z, Zhou M, Liu J, Zhao W. Underlying antihypertensive mechanism of egg white-derived peptide QIGLF using renal metabolomics analysis. Food Res Int 2022; 157:111457. [PMID: 35761693 DOI: 10.1016/j.foodres.2022.111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The kidney is an important target organ in the treatment of hypertension, but the effect of peptide QIGLF with antihypertensive activity on kidneys remains unknown. In the work, we aimed to further understand the hypotensive effects of QIGLF in spontaneously hypertensive rats (SHRs) using widely targeted metabolomics technology to investigate the kidney metabolic profiling variations. After four weeks of oral administration, the results showed different renal metabolomics profiles between QIGLF and model groups. Besides, a total of 10 potential biomarkers were identified, that is, 3-hydroxybutanoate, 20-hydroxyeicosatetraenoic acid, 19(S)-hydroxyeicosatetraenoic acid, 15-oxoETE, L-ornithine, malonate, uridine, uridine 5'-monophosphate, argininosuccinic acid, and N-carbamoyl-L-aspartate. These metabolites might exhibit antihypertensive activity of QIGLF by regulating synthesis and degradation of ketone bodies, arachidonic acid metabolism, pyrimidine metabolism, and arginine biosynthesis. These findings suggest that QIGLF might alleviate hypertension by inhibiting renal inflammation, promoting natriuresis, and regulating renal nitric oxide production.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China; School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mingjie Zhou
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Coleman MJ, Espino LM, Lebensohn H, Zimkute MV, Yaghooti N, Ling CL, Gross JM, Listwan N, Cano S, Garcia V, Lovato DM, Tigert SL, Jones DR, Gullapalli RR, Rakov NE, Torrazza Perez EG, Castillo EF. Individuals with Metabolic Syndrome Show Altered Fecal Lipidomic Profiles with No Signs of Intestinal Inflammation or Increased Intestinal Permeability. Metabolites 2022; 12:431. [PMID: 35629938 PMCID: PMC9143200 DOI: 10.3390/metabo12050431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk to develop various comorbidities with far-reaching medical consequences such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study aimed to evaluate intestinal health in human subjects with MetS. METHODS We examined MetS risk factors in individuals through body measurements and clinical and biochemical blood analysis. To evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permeability through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in the host-microbiota gut metabolism. RESULTS No signs of intestinal inflammation or increased intestinal permeability were observed in the MetS group compared to our control group. However, we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented with increased levels of serum TNFα that also correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. CONCLUSION Taken together, our main results show that MetS subjects showed major alterations in fecal lipid profiles suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.
Collapse
Affiliation(s)
- Mia J. Coleman
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Luis M. Espino
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Hernan Lebensohn
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Marija V. Zimkute
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Negar Yaghooti
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Christina L. Ling
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Jessica M. Gross
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Natalia Listwan
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Sandra Cano
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Vanessa Garcia
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Debbie M. Lovato
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Susan L. Tigert
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY 10016, USA;
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Neal E. Rakov
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Euriko G. Torrazza Perez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Eliseo F. Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| |
Collapse
|
3
|
Perng W, Hivert MF, Michelotti G, Oken E, Dabelea D. Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts. Metabolites 2022; 12:404. [PMID: 35629908 PMCID: PMC9147862 DOI: 10.3390/metabo12050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Here, we seek to identify metabolite predictors of dysglycemia in youth. In the discovery analysis among 391 youth in the Exploring Perinatal Outcomes among CHildren (EPOCH) cohort, we used reduced rank regression (RRR) to identify sex-specific metabolite predictors of impaired fasting glucose (IFG) and elevated fasting glucose (EFG: Q4 vs. Q1 fasting glucose) 6 years later and compared the predictive capacity of four models: Model 1: ethnicity, parental diabetes, in utero exposure to diabetes, and body mass index (BMI); Model 2: Model 1 covariates + baseline waist circumference, insulin, lipids, and Tanner stage; Model 3: Model 2 + baseline fasting glucose; Model 4: Model 3 + baseline metabolite concentrations. RRR identified 19 metabolite predictors of fasting glucose in boys and 14 metabolite predictors in girls. Most compounds were on lipid, amino acid, and carbohydrate metabolism pathways. In boys, no improvement in aurea under the receiver operating characteristics curve AUC occurred until the inclusion of metabolites in Model 4, which increased the AUC for prediction of IFG (7.1%) from 0.81 to 0.97 (p = 0.002). In girls, %IFG was too low for regression analysis (3.1%), but we found similar results for EFG. We replicated the results among 265 youth in the Project Viva cohort, focusing on EFG due to low %IFG, suggesting that the metabolite profiles identified herein have the potential to improve the prediction of glycemia in youth.
Collapse
Affiliation(s)
- Wei Perng
- Lifcourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA; (M.-F.H.); (E.O.)
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA; (M.-F.H.); (E.O.)
- Department of Nutrition, T. H. Chan Harvard School of Public Health, Boston, MA 02115, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Murbach TS, Glávits R, Endres JR, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A toxicological evaluation of lithium orotate. Regul Toxicol Pharmacol 2021; 124:104973. [PMID: 34146638 DOI: 10.1016/j.yrtph.2021.104973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Lithium orotate, the salt of lithium and orotic acid, has been marketed for decades as a supplemental source of lithium with few recorded adverse events. Nonetheless, there have been some concerns in the scientific literature regarding orotic acid, and pharmaceutical lithium salts are known to have a narrow therapeutic window, albeit, at lithium equivalent therapeutic doses 5.5-67 times greater than typically recommended for supplemental lithium orotate. To our knowledge, the potential toxicity of lithium orotate has not been investigated in preclinical studies; thus, we conducted a battery of genetic toxicity tests and an oral repeated-dose toxicity test in order to further explore its safety. Lithium orotate was not mutagenic or clastogenic in bacterial reverse mutation and in vitro mammalian chromosomal aberration tests, respectively, and did not exhibit in vivo genotoxicity in a micronucleus test in mice. In a 28-day, repeated-dose oral toxicity study, rats were administered 0, 100, 200, or 400 mg/kg body weight/day of lithium orotate by gavage. No toxicity or target organs were identified; therefore, a no observed adverse effect level was determined as 400 mg/kg body weight/day. These results are supportive of the lack of a postmarket safety signal from several decades of human consumption.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary; Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | | |
Collapse
|
5
|
Gao X, Zhang Z, Li X, Li C, Hao J, Luo Y, Lei M, Li J, Liu C, He K. Macitentan Attenuates Chronic Mountain Sickness in Rats by Regulating Arginine and Purine Metabolism. J Proteome Res 2020; 19:3302-3314. [PMID: 32640793 DOI: 10.1021/acs.jproteome.0c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaojian Gao
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Zeyu Zhang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Li
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Li
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianxiu Hao
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yunfu Luo
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Maoyi Lei
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Junmiao Li
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chunlei Liu
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
6
|
Ravesh Z, Yassaee VR, Tonekaboni SH, Razzaghy-Azar M, Hashemi-Gorji F, Salehpour S, Miryounesi M, Ghafouri-Fard S. Next generation sequencing elucidated a clinically undiagnosed metabolic disorder - An Iranian family with hereditary orotic aciduria. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Buj R, Aird KM. Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:177. [PMID: 29720963 PMCID: PMC5915462 DOI: 10.3389/fendo.2018.00177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
The maintenance of a healthy deoxyribonucleotide triphosphate (dNTP) pool is critical for the proper replication and repair of both nuclear and mitochondrial DNA. Temporal, spatial, and ratio imbalances of the four dNTPs have been shown to have a mutagenic and cytotoxic effect. It is, therefore, essential for cell homeostasis to maintain the balance between the processes of dNTP biosynthesis and degradation. Multiple oncogenic signaling pathways, such as c-Myc, p53, and mTORC1 feed into dNTP metabolism, and there is a clear role for dNTP imbalances in cancer initiation and progression. Additionally, multiple chemotherapeutics target these pathways to inhibit nucleotide synthesis. Less is understood about the role for dNTP levels in metabolic disorders and syndromes and whether alterations in dNTP levels change cancer incidence in these patients. For instance, while deficiencies in some metabolic pathways known to play a role in nucleotide synthesis are pro-tumorigenic (e.g., p53 mutations), others confer an advantage against the onset of cancer (G6PD). More recent evidence indicates that there are changes in nucleotide metabolism in diabetes, obesity, and insulin resistance; however, whether these changes play a mechanistic role is unclear. In this review, we will address the complex network of metabolic pathways, whereby cells can fuel dNTP biosynthesis and catabolism in cancer, and we will discuss the potential role for this pathway in metabolic disease.
Collapse
Affiliation(s)
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Effects of extracellular orotic acid on acute contraction-induced adaptation patterns in C2C12 cells. Mol Cell Biochem 2018; 448:251-263. [DOI: 10.1007/s11010-018-3330-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
|
9
|
Lowe FJ, Luettich K, Talikka M, Hoang V, Haswell LE, Hoeng J, Gaca MD. Development of an Adverse Outcome Pathway for the Onset of Hypertension by Oxidative Stress-Mediated Perturbation of Endothelial Nitric Oxide Bioavailability. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Vy Hoang
- Selventa, One Alewife Center, Cambridge, Massachusetts
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| |
Collapse
|
10
|
Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 2016; 13:49. [PMID: 27493677 PMCID: PMC4972972 DOI: 10.1186/s12986-016-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival, regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.
Collapse
Affiliation(s)
- Xunxian Liu
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|