1
|
Chapman F, Pour SJ, Wieczorek R, Trelles Sticken E, Budde J, Röwer K, Otte S, Mason E, Czekala L, Nahde T, O'Connell G, Simms L, Stevenson M. Twenty-eight day repeated exposure of human 3D bronchial epithelial model to heated tobacco aerosols indicates decreased toxicological responses compared to cigarette smoke. FRONTIERS IN TOXICOLOGY 2023; 5:1076752. [PMID: 36875887 PMCID: PMC9979258 DOI: 10.3389/ftox.2023.1076752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Tobacco harm reduction (THR) involves providing adult smokers with potentially reduced harm modes of nicotine delivery as alternatives to smoking combustible cigarettes. Heated tobacco products (HTPs) form a category with THR potential due to their ability to deliver nicotine and flavours through heating, not burning, tobacco. By eliminating burning, heated tobacco does not produce smoke but an aerosol which contains fewer and lower levels of harmful chemicals compared to cigarette smoke. In this study we assessed the in vitro toxicological profiles of two prototype HTPs' aerosols compared to the 1R6F reference cigarette using the 3D human (bronchial) MucilAir™ model. To increase consumer relevance, whole aerosol/smoke exposures were delivered repeatedly across a 28 day period (16, 32, or 48 puffs per exposure). Cytotoxicity (LDH secretion), histology (Alcian Blue/H&E; Muc5AC; FoxJ1 staining), cilia active area and beat frequency and inflammatory marker (IL-6; IL-8; MMP-1; MMP-3; MMP-9; TNFα) levels were assessed. Diluted 1R6F smoke consistently induced greater and earlier effects compared to the prototype HTP aerosols across the endpoints, and in a puff dependent manner. Although some significant changes across the endpoints were induced by exposure to the HTPs, these were substantially less pronounced and less frequently observed, with apparent adaptive responses occurring over the experimental period. Furthermore, these differences between the two product categories were observed at a greater dilution (and generally lower nicotine delivery range) for 1R6F (1R6F smoke diluted 1/14, HTP aerosols diluted 1/2, with air). Overall, the findings demonstrate the THR potential of the prototype HTPs through demonstrated substantial reductions in toxicological outcomes in in vitro 3D human lung models.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Röwer
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | - Sandra Otte
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | | | | | - Thomas Nahde
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | | | - Liam Simms
- Imperial Brands PLC, Bristol, United Kingdom
| | | |
Collapse
|
2
|
Czekala L, Chapman F, Simms L, Rudd K, Trelles Sticken E, Wieczorek R, Bode LM, Pani J, Moelijker N, Derr R, Brandsma I, Hendriks G, Stevenson M, Walele T. The in vitro ToxTracker and Aneugen Clastogen Evaluation extension assay as a tool in the assessment of relative genotoxic potential of e-liquids and their aerosols. Mutagenesis 2021; 36:129-142. [PMID: 33769537 PMCID: PMC8166346 DOI: 10.1093/mutage/geaa033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.
Collapse
Affiliation(s)
- Lukasz Czekala
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Fiona Chapman
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Kathryn Rudd
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Edgar Trelles Sticken
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Lisa Maria Bode
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Jutta Pani
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Nynke Moelijker
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Remco Derr
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Inger Brandsma
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Giel Hendriks
- Toxys B.V., Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Matthew Stevenson
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| | - Tanvir Walele
- Group Science and Regulatory Affairs, Imperial Brands PLC, Bristol, UK
| |
Collapse
|
3
|
Bulnes S, Murueta-Goyena A, Lafuente JV. Differential exposure to N-ethyl N-nitrosourea during pregnancy is relevant to the induction of glioma and PNSTs in the brain. Neurotoxicol Teratol 2021; 86:106998. [PMID: 34048896 DOI: 10.1016/j.ntt.2021.106998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Exposure to N-nitroso compounds (NOCs) during pregnancy has been associated with an increase in brain tumors in the progeny. This study investigated the brain tumorigenic effect of N-ethyl N-nitrosourea (ENU) after differential exposure of rats during pregnancy. Sprague Dawley rats were exposed to a single dose of ENU (80 mg/kg) in three different circumstances: 1) at first, second or third week of gestation; 2) at the 15th embryonic day (E15) in consecutive litters and 3) at E15 in three successive generations. Location and characterization of the offspring's brain tumors were performed by magnetic resonance imaging and histopathological studies. Finally, tumor incidence and latency and the animals' survival were recorded. ENU-exposure in the last two weeks of pregnancy induced intracranial tumors in over 70% of the offspring rats, these being mainly gliomas with some peripheral nerve sheath tumors (PNSTs). Tumors appeared in young adults; glioma-like small multifocal neoplasias converged on large glioblastomas in senescence and PNSTs in the sheath of the trigeminal nerve, extending to cover the brain convexity. ENU-exposure at E15 in subsequent pregnancies lead to an increase in glioma and PNST incidence. However, consecutive generational ENU-exposure (E15) decreased the animals' survival due to an early onset of both types of tumors. Moreover, PNST presented an inheritable component because progeny, which were not themselves exposed to ENU but whose progenitors were, developed PNSTs. Our results suggest that repeated exposure to ENU later in pregnancy and in successive generations favours the development of intracranial gliomas and PNSTs in the offspring.
Collapse
Affiliation(s)
- Susana Bulnes
- LaNCE, Department of Neuroscience, University of the Basque Country, (UPV/EHU), Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Ane Murueta-Goyena
- Department of Preventative Medicine and Public Health, University of the Basque Country, (UPV/EHU), Leioa, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country, (UPV/EHU), Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
4
|
Chapman KE, Wilde EC, Chapman FM, Verma JR, Shah UK, Stannard LM, Seager AL, Tonkin JA, Brown MR, Doherty AT, Johnson GE, Doak SH, Jenkins GJS. Multiple-endpoint in vitro carcinogenicity test in human cell line TK6 distinguishes carcinogens from non-carcinogens and highlights mechanisms of action. Arch Toxicol 2021; 95:321-336. [PMID: 32910239 PMCID: PMC7811515 DOI: 10.1007/s00204-020-02902-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.
Collapse
Affiliation(s)
- Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK.
| | - Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Jatin R Verma
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Leanne M Stannard
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Anna L Seager
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - James A Tonkin
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - M Rowan Brown
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Ann T Doherty
- Discovery Safety, AstraZeneca, DSM, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| |
Collapse
|
5
|
Dural E, Shah UK, Pritchard D, Chapman KE, Doak SH, Jenkins GJS. The effect of chronic dosing and p53 status on the genotoxicity of pro-oxidant chemicals in vitro. Mutagenesis 2020; 35:479-489. [PMID: 33259605 DOI: 10.1093/mutage/geaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 11/12/2022] Open
Abstract
In this study, we have studied the cytotoxicity and genotoxic potency of 3 pro-oxidants; H2O2, menadione and KBrO3 in different dosing scenarios, namely acute (1-day dosing) and chronic (5-days). For this purpose, relative population doubling (RPD%) and mononucleated micronucleus (MN) test were used. TK6 cells and NH32 were employed in in vitro experiments. In the study, the total acute dose was divided into 5 days for each prooxidant chemicals by dose fractionation (1/5th per day) method. Acute dosing was compared to chronic dosing. The oxidative stress caused by the exposure of cells with pro-oxidant chemicals to the cells was determined by an optimized 2',7'-dichlorofluorescein diacetate (DCFHDA) test method. The antioxidant levels of the cell lines were altered with buthionine sulfoxide (BSO) and N-acetyl cysteine (NAC), and the effect of antioxidant capacity on the MN formation in the cells was observed with this method. In the case of H2O2 and menadione, fractional dosing has been observed to result in lower toxicity and lower genotoxicity. But in the case of KBrO3, unlike the other 2 pro-oxidants, higher MN induction was observed with fractionated doses. DCFHDA test clearly demonstrated ROS induction with H2O2 and menadione but not with KBrO3. Unexpectedly, DCFHDA test demonstrated that KBrO3 did not cause an increase ROS levels in both acute and chronic dosing, suggesting an alternative ROS induction mechanism. It was also observed that, treatment with BSO and NAC, caused increasing and decreasing of MN fold change respectively, allowing further ROS specific mechanisms to be explored. Hence, dose fractionation expectedly caused less MN, cytotoxicity and ROS formation with H2O2 and menadione exposure, but not with KBrO3. This implies a unique mechanism of action for KBrO3 induced genotoxicity. Chronic dosing in vitro may be a valuable approach allowing better understanding of how chemicals damage DNA and pose human hazards.
Collapse
Affiliation(s)
- Emrah Dural
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
- Sivas Cumhuriyet University, Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Sivas, Turkey
| | - Ume-Kulsoom Shah
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Demi Pritchard
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Katherine Emma Chapman
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Shareen Heather Doak
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| | - Gareth James Scott Jenkins
- In vitro Toxicology Group, Institute of Life Science, College of Medicine, Swansea University, Swansea, U.K
| |
Collapse
|
6
|
Chapman FM, Sparham C, Hastie C, Sanders DJ, van Egmond R, Chapman KE, Doak SH, Scott AD, Jenkins GJS. Comparison of passive-dosed and solvent spiked exposures of pro-carcinogen, benzo[a]pyrene, to human lymphoblastoid cell line, MCL-5. Toxicol In Vitro 2020; 67:104905. [PMID: 32497684 DOI: 10.1016/j.tiv.2020.104905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.
Collapse
Affiliation(s)
- Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK.
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Colin Hastie
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - David J Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Roger van Egmond
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Andrew D Scott
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| |
Collapse
|