1
|
Tang H, Li Z, Yang C, Fu L, Ji X, Chen Z, Gan S, Zhang H, Zhang P, Li S, Zhang W, Chen X, Yao L, Li J. CTSS contributes to airway neutrophilic inflammation in mixed granulocytic asthma. Respir Res 2024; 25:441. [PMID: 39719614 DOI: 10.1186/s12931-024-03077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Mixed granulocytic asthma (MGA) is usually associated with poor response to corticosteroid therapy and a high risk of severe asthma. Cathepsin S (CTSS) has been found to play an important role in various inflammatory diseases. This study was aimed to investigate the role of CTSS in MGA. METHODS Induced sputum was obtained from healthy subjects and asthma patients. Two murine models of MGA were established using either TDI (toluene diisocyanate) alone or OVA emulsified in CFA. LY3000328, a specific antagonist of CTSS, was therapeutically given to BALB/c mice after airway challenge with TDI or OVA. The effects of recombinant CTSS was tested in vivo, and Akt inhibition was used to explore a possible mechanism for CTSS-induced airway inflammation. RESULTS MGA patients have a significant higher sputum CTSS level than the health and subjects with other inflammatory phenotypes, which was positively correlated with sputum level of soluble E-cadherin (sE-cadherin), sputum neutrophils, FeNO, FEF25-75% and glucocorticoid dosage. Allergen exposure markedly increased CTSS level and pharmacological antagonism of CTSS with LY3000328 decreased airway hyperresponsiveness, airway neutrophil accumulation, as well as the release of IL-17 and sE-cadherin in murine models of MGA, yet had no effects on eosinophilic inflammation nor type 2 inflammatory cytokines (IL-4 and IL-5). In addition, intratracheal instillation of recombinant CTSS leads to neutrophil recruitment and overproduction of sE-cadherin in the lung tissues, which could be attenuated by inhibition of Akt signaling. CONCLUSION Our data suggested that CTSS contributes to airway neutrophilic inflammation in MGA through an Akt-dependent pathway.
Collapse
Affiliation(s)
- Haixiong Tang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongli Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changyun Yang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Fu
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaolong Ji
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - PingAn Zhang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjun Zhang
- The Second Clinical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Liang J, Zhou C, Zhang C, Liang S, Zhou Z, Zhou Z, Wu C, Zhao H, Meng X, Zou F, Yu C, Cai S. Nicotinamide mononucleotide attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Int Immunopharmacol 2024; 127:111328. [PMID: 38064810 DOI: 10.1016/j.intimp.2023.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jiayuan Liang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changyun Zhang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixiu Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiwen Wu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhui Yu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Stefanescu K, Timlin CL, Moy AS, Zapotoczny G. Reduced Isocyanate Release Using a Waterproof, Resin-Based Cast Alternative Relative to Fiberglass Casts. TOXICS 2023; 11:1002. [PMID: 38133403 PMCID: PMC10747184 DOI: 10.3390/toxics11121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The effects of occupational isocyanate exposure range from asthma and contact dermatitis to neurotoxicity and cancer. Respiratory sensitization due to orthopedic cast application has been well documented. This study aims to compare the safety of standard-of-care fiberglass casts and a novel waterproof cast alternative by measuring the amount of isocyanate released during off-gassing over time. A 3D-printed arm simulator with comparable casing material amounts was placed in a sealed chamber. An isocyanate-sensing color-changing (SafeAir) tag was used to measure the levels of toxic exposure. Triplicate trials were conducted across all time periods (15 min, 1 h, and 24 h) and conditions. The bare arm simulator and freshly opened tags served as negative controls. Normalized pixel intensity indexes and isocyanate release estimates in ppb were derived from ImageJ-analyzed SafeAir tag photos. Fiberglass casts exhibited greater isocyanate release than both the waterproof alternative (p = 0.0002) and no-cast controls (p = 0.0006), particularly at 24 h. The waterproof alternative and no-cast control did not statistically differ (p = 0.1603). Therefore, the waterproof alternative released less isocyanate than the fiberglass casts. Waterproof cast alternatives may be safer than fiberglass by limiting medical professionals' exposure to toxic isocyanates and, thus, decreasing their risk of suffering occupational asthma.
Collapse
Affiliation(s)
- Kristen Stefanescu
- Keck School of Medicine of the University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA;
| | | | | | - Grzegorz Zapotoczny
- Consortium for Technology & Innovation in Pediatrics, Lurie Children’s Hospital, 225 E Chicago Ave., Chicago, IL 60611, USA;
| |
Collapse
|
4
|
Zhang H, Li J, Wang X, Wang K, Xie J, Chen G, Li Y, Zhong K, Li J, Chen X. IRE1α/XBP-1 promotes β-catenin signaling activation of airway epithelium in lipopolysaccharide-induced acute lung injury. Pulm Pharmacol Ther 2023; 83:102263. [PMID: 37935327 DOI: 10.1016/j.pupt.2023.102263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Acute lung injury (ALI), along with the more severe condition--acute respiratory distress syndrome (ARDS), is a major cause of respiratory failure in critically ill patients with high morbidity and mortality. Inositol-requiring protein 1α (IRE1α)/X box protein-1 (XBP1) pathway was proved to regulate lipopolysaccharide (LPS)-induced lung injury and inflammation. Yet, its role on epithelial β-catenin in LPS-induced ALI remains to be elucidated. METHODS LPS-induced models were generated in mice (5 mg/kg) and Beas-2B cells (200 μg/mL). Two selective antagonists of IRE1α (4μ8c and STF-083010) were respectively given to LPS-exposed mice and cultured cells. RESULTS Up-regulated expression of endoplasmic reticulum (ER) stress markers immunoglobulin-binding protein (BIP) and spliced X box protein-1(XBP-1s) was detected after LPS exposure. Besides, LPS also led to a down-regulated total β-catenin level in the lung and Beas-2B cells, with decreased membrane distribution as well as increased cytoplasmic and nuclear accumulation, paralleled by extensively up-regulated downstream targets of the Wnt/β-catenin signaling. Treatment with either 4μ8c or STF-083010 not only significantly attenuated LPS-induced lung injury and inflammation, but also recovered β-catenin expression in airway epithelia, preserving the adhesive function of β-catenin while blunting its signaling activity. CONCLUSION These results illustrated that IRE1α/XBP1 pathway promoted the activation of airway epithelial β-catenin signaling in LPS-induced ALI.
Collapse
Affiliation(s)
- Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiehong Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xilong Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - JianPeng Xie
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guanjin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yijian Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Pandey V, Yadav V, Singh R, Srivastava A, Subhashini. β-Endorphin (an endogenous opioid) inhibits inflammation, oxidative stress and apoptosis via Nrf-2 in asthmatic murine model. Sci Rep 2023; 13:12414. [PMID: 37524754 PMCID: PMC10390559 DOI: 10.1038/s41598-023-38366-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
Asthma, a chronic respiratory disease is characterized by airway inflammation, remodelling, airflow limitation and hyperresponsiveness. At present, it is considered as an umbrella diagnosis consisting several variable clinical presentations (phenotypes) and distinct pathophysiological mechanisms (endotypes). Recent evidence suggests that oxidative stress participates in airway inflammation and remodelling in chronic asthma. Opioids resembled by group of regulatory peptides have proven to act as an immunomodulator. β-Endorphin a natural and potent endogenous morphine produced in the anterior pituitary gland play role in pain modulation. Therapeutic strategy of many opioids including β-Endorphin as an anti‑inflammatory and antioxidative agent has not been yet explored despite its promising analgesic effects. This is the first study to reveal the role of β-Endorphin in regulating airway inflammation, cellular apoptosis, and oxidative stress via Nrf-2 in an experimental asthmatic model. Asthma was generated in balb/c mice by sensitizing with 1% Toulene Diisocyanate on day 0, 7, 14 and 21 and challenging with 2.5% Toulene Diisocyanate from day 22 to 51 (on every alternate day) through intranasal route. β-Endorphin (5 µg/kg) was administered through the nasal route 1 h prior to sensitization and challenge. The effect of β-Endorphin on pulmonary inflammation and redox status along with parameters of oxidative stress were evaluated. We found that pre-treatment of β-Endorphin significantly reduced inflammatory infiltration in lung tissue and cell counts in bronchoalveolar lavage fluid. Also, pre-treatment of β-Endorphin reduced reactive oxygen species, Myeloperoxidase, Nitric Oxide, Protein and protein carbonylation, Glutathione Reductase, Malondialdehyde, IFN-γ, and TNF-α. Reversely, β-Endorphin significantly increased Superoxide dismutase, Catalase, glutathione, Glutathione-S-Transferase, and activation of NF-E2-related factor 2 (Nrf-2) via Kelch-like ECH-associated protein 1 (Keap1), independent pathway in the lung restoring architectural alveolar and bronchial changes. The present findings reveal the therapeutic potency of β-END in regulating asthma by Keap-1 independent regulation of Nrf-2 activity. The present findings reveal the therapeutic potency of β-Endorphin in regulating asthma.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Vandana Yadav
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalya, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Huang C, Zheng D, Fu C, Cai Z, Zhang H, Xie Z, Luo L, Li H, Huang Y, Chen J. Secreted S100A4 causes asthmatic airway epithelial barrier dysfunction induced by house dust mite extracts via activating VEGFA/VEGFR2 pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:1431-1444. [PMID: 36883729 DOI: 10.1002/tox.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Dongyan Zheng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunlai Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhefan Xie
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huifang Li
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Huang J, Chen Y, Peng X, Gong Z, Wang Y, Li Y, Xu M, Ma Y, Yu C, Cai S, Zhao W, Zhao H. Mitoquinone ameliorated airway inflammation by stabilizing β-catenin destruction complex in a steroid-insensitive asthma model. Biomed Pharmacother 2023; 162:114680. [PMID: 37060658 DOI: 10.1016/j.biopha.2023.114680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial dysfunction is an essential part of the pathophysiology of asthma, and potential treatments that target the malfunctioning mitochondria have attracted widespread attention. We have previously demonstrated that aberrant epithelial β-catenin signaling played a crucial role in a toluene diisocyanate (TDI)-induced steroid-insensitive asthma model. The objective of this study was to determine if the mitochondrially targeted antioxidant mitoquinone(MitoQ) regulated the activation of β-catenin in TDI-induced asthma. METHOD Mice were sensitized and challenged with TDI to generate a steroid-insensitive asthma model. Human bronchial epithelial cells (16HBE) were exposed to TDI-human serum albumin (HSA) and ethidium bromide(EB) to simulate the TDI-induced asthma model and mitochondrial dysfunction. RESULTS MitoQ dramatically attenuated TDI-induced AHR, airway inflammation, airway goblet cell metaplasia, and collagen deposition and markedly protected epithelial mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species (ROS). MitoQ administration stabilized β-catenin destruction complex from disintegration and inhibited the activation of β-catenin. Similarly, YAP1, an important constituent of β-catenin destruction complex, was inhibited by Dasatinib, which alleviated airway inflammation and the activation of β-catenin, and restored mitochondrial mass. In vitro, treating 16HBE cells with EB led to the activation of YAP1 and β-catenin signaling, decreased the expression of glucocorticoid receptors and up-regulated interleukin (IL)-1β, IL6 and IL-8 expression. CONCLUSION Our results indicated that mitochondria mediates airway inflammation by regulating the stability of the β-catenin destruction complex and MitoQ might be a promising therapeutic approach to improve airway inflammation and severe asthma. AVAILABILITY OF DATA AND MATERIALS The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.
Collapse
Affiliation(s)
- Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ying Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yuemao Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Peng X, Huang M, Zhao W, Lan Z, Wang X, Yuan Y, Li B, Yu C, Liu L, Dong H, Cai S, Zhao H. RAGE mediates airway inflammation via the HDAC1 pathway in a toluene diisocyanate-induced murine asthma model. BMC Pulm Med 2022; 22:61. [PMID: 35148729 PMCID: PMC8832863 DOI: 10.1186/s12890-022-01832-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to toluene diisocyanate (TDI) is a significant pathogenic factor for asthma. We previously reported that the receptor for advanced glycation end products (RAGE) plays a key role in TDI-induced asthma. Histone deacetylase (HDAC) has been reported to be important in asthmatic pathogenesis. However, its effect on TDI-induced asthma is not known. The aim of this study was to determine the role of RAGE and HDAC in regulating airway inflammation using a TDI-induced murine asthma model. METHODS BALB/c mice were sensitized and challenged with TDI to establish an asthma model. FPS-ZM1 (RAGE inhibitor), JNJ-26482585 and romidepsin (HDAC inhibitors) were administered intraperitoneally before each challenge. In vitro, the human bronchial epithelial cell line 16HBE was stimulated with TDI-human serum albumin (TDI-HSA). RAGE knockdown cells were constructed and evaluated, and MK2006 (AKT inhibitor) was also used in the experiments. RESULTS In TDI-induced asthmatic mice, the expression of RAGE, HDAC1, and p-AKT/t-AKT was upregulated, and these expressions were attenuated by FPS-ZM1. Airway reactivity, Th2 cytokine levels in lymph supernatant, IgE, airway inflammation, and goblet cell metaplasia were significantly increased in the TDI-induced asthmatic mice. These increases were suppressed by JNJ-26482585 and romidepsin. In addition, JNJ-26482585 and romidepsin ameliorated the redistribution of E-cadherin and β-catenin in TDI-induced asthma. In TDI-HSA-stimulated 16HBE cells, knockdown of RAGE attenuated the upregulation of HDAC1 and phospho-AKT (p-AKT). Treatment with the AKT inhibitor MK2006 suppressed TDI-induced HDAC1 expression. CONCLUSIONS These findings indicate that RAGE modulates HDAC1 expression via the PI3K/AKT pathway, and that inhibition of HDAC prevents TDI-induced airway inflammation.
Collapse
Affiliation(s)
- Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Minyu Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zihan Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohua Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yafei Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bohou Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Chen S, Chen Z, Deng Y, Zha S, Yu L, Li D, Liang Z, Yang K, Liu S, Chen R. Prevention of IL-6 signaling ameliorates toluene diisocyanate-induced steroid-resistant asthma. Allergol Int 2022; 71:73-82. [PMID: 34332882 DOI: 10.1016/j.alit.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accumulating evidence indicated the crucial role for interleukin 6 (IL-6) signaling in the development of allergic asthma. Yet, the role of IL-6 signaling in toluene diisocyanate (TDI)-induced mixed granulocytic airway inflammation still remains unclear. Thus, the aims of this study were to dissect the role of IL-6 signaling and to evaluate the effect of tocilizumab on TDI-induced steroid-resistant asthma. METHODS TDI-induced asthma model was prepared and asthmatic mice were respectively given IL-6 monoclonal antibody, IL-6R monoclonal antibody (tocilizumab, 5 mg/kg, i.p. after each challenge) for therapeutic purposes or isotype IgG as control. RESULTS TDI exposure just elevated IL-6R expression in the infiltrated inflammatory cells around the airway, but increased glycoprotein 130 expression in the whole lung, especially in bronchial epithelium. Moreover, TDI inhalation increased airway hyperresponsiveness (AHR) to methacholine, coupled with mixed granulocytic inflammation, exaggerated epithelial denudation, airway smooth muscle thickening, goblet cell metaplasia, extensive submucosal collagen deposition, dysregulated Th2/Th17 responses, as well as innate immune responses and raised serum IgE. And almost all these responses except for raised serum IgE were markedly ameliorated by the administration of IL-6 neutralizing antibody or tocilizumab, but exhibited poor response to systemic steroid treatment. Also, TDI challenge induced nucleocytoplasm translocation of HMGB1 and promoted its release in the BALF, as well as elevated lung level of STAT3 phosphorylation, which were inhibited by anti-IL-6 and anti-IL-6R treatment. CONCLUSIONS Our data suggested that IL-6 monoclonal antibody and tocilizumab might effectively abrogate TDI-induced airway inflammation and remodeling, which could be used as a clinical potential therapy for patients with severe asthma.
Collapse
|
10
|
Yao L, Tang Y, Chen J, Li J, Wang H, Lu M, Gao L, Liu F, Chang P, Liu X, Tang H. Impaired airway epithelial barrier integrity was mediated by PI3Kδ in a mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2021; 95:107570. [PMID: 33773208 DOI: 10.1016/j.intimp.2021.107570] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023]
Abstract
Cell-cell junctions are critical for the maintenance of cellular as well as tissue polarity and integrity. Dysfunction of airway epithelial barrier has been shown to be involved in the pathogenesis of acute lung injury (ALI). Yet the role of phosphatidylinositol 3-kinase delta (PI3Kδ) in dysregulation of airway epithelial barrier integrity in ALI has not been addressed. Mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to generate a ALI model. Two pharmacological inhibitors of PI3Kδ, IC87114 and AMG319, were respectively given to the mice. Expression of p110δ and its downstream substrate phospho-AKT (Ser473) was increased in LPS-exposed lungs. These increases were inhibited by IC87114 or AMG319. LPS led to pronounced lung injury that was accompanied by significant airway neutrophil recruitment and bronchial epithelial morphological alterations 72 h after exposure. We also found compromised expression of adherens junction protein E-cadherin and tight junction protein claudin-2 in the airway epithelial cells. Treatment with either IC87114 or AMG319 not only attenuated LPS-induced edema, lung injury and neutrophilc inflammation, reduced total protein concentration and IL-6, TNF-α secretion in BALF, but also restored epithelial E-cadherin and claudin-2 expression. In summary, our results showed that LPS can induce a delayed effect on airway epithelial barrier integrity that is mediated by PI3Kδ in a mouse model of ALI.
Collapse
Affiliation(s)
- Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ying Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Lu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Gao
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingxing Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Haixiong Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Xu C, Chen S, Deng Y, Song J, Li J, Chen X, Chang P, Yao L, Tang H. Distinct roles of PI3Kδ and PI3Kγ in a toluene diisocyanate-induced murine asthma model. Toxicology 2021; 454:152747. [PMID: 33711354 DOI: 10.1016/j.tox.2021.152747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
TDI-induced asthma is characterized by neutrophil-dominated airway inflammation and often associated with poor responsiveness to steroid treatment. Both PI3Kδ and PI3Kγ have been demonstrated to play important proinflammatory roles in ovalbumin-induced asthma. We've already reported that blocking pan PI3K effectively attenuated TDI-induced allergic airway inflammation. Yet the specific functions of PI3Kδ and PI3Kγ in TDI-induced asthma are still unclear. Male BALB/c mice were first dermally sensitized and then challenged with TDI to generate an asthma model. Sellective inhibitors of PI3Kδ (IC-87114, AMG319) and PI3Kγ (AS252424, AS605240) were respectively given to the mice after each airway challenge. Treatment with IC-87114 or AMG319 after TDI exposure led to significantly decreased airway hyperresponsiveness (AHR), less neutrophil and eosinophil accumulation, attenuated airway smooth muscle (ASM) thickening, less M1 and M2 macrophages in lung, as well as lower levels of IL-4, IL-5, IL-6 and IL-18 in bronchoalveolar lavage fluid (BALF) and recovered IL-10 production. While mice treated with AS252424 or AS605240 had increased AHR, more severe ASM thickening, larger numbers of neutrophils and eosinophils, more M1 but less M2 macrophages, and higher BALF levels of IL-4, IL-5, IL-6, IL-10, IL-12, IL-18 when compared with those treated with vehicle. These data revealed that pharmacological inhibition of PI3Kδ attenuates TDI-induced airway inflammation while PI3Kγ inhibition exacerbates TDI-induced asthma, indicating distinct biological functions of PI3Kδ and PI3Kγ in TDI-induced asthma.
Collapse
Affiliation(s)
- Caiyun Xu
- Department of Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yao Deng
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiafu Song
- Department of Respiratory and Critical Care Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Lianyungang, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Haixiong Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Li J, Wang K, Huang B, Li R, Wang X, Zhang H, Tang H, Chen X. The receptor for advanced glycation end products mediates dysfunction of airway epithelial barrier in a lipopolysaccharides-induced murine acute lung injury model. Int Immunopharmacol 2021; 93:107419. [PMID: 33548580 DOI: 10.1016/j.intimp.2021.107419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) act as the first barrier protecting against invasion of environment agents and maintain integrity of lung structure and function. Dysfunction of airway epithelial barrier has been shown to be involved in ALI/ARDS pathogenesis. Yet, the exact mechanism is still obscure. Our study evaluated whether the receptor for advanced glycation end products (RAGE) mediates impaired airway epithelial barrier in LPS-induced murine ALI model. METHODS Male BALB/c mice were subjected to intratracheal instillation of LPS to generate an ALI model. Inhibitors of RAGE, FPS-ZM1 and Azeliragon were respectively given to the mice through intraperitoneal injection. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected for further analysis. RESULTS LPS exposure led to markedly increased expression of RAGE and its ligands HMGB1, HSP70, S100b. Treatment of FPS-ZM1 or Azeliragon not only effectively descended the expression of RAGE and its ligands but also attenuated LPS-induced neutrophil-predominant airway inflammation and injury, decreased levels of IL-6, IL-1β and TNF-α in BALF, alleviated increased alveolar-capillary permeability and pulmonary edema. LPS stimulation significantly impaired the integrity of airway epithelium, paralleled with dislocation of adheren junction (AJ) protein E-cadherin at cell-cell contacts and down-expression of both AJ and tight junction (TJ) proteins Claudin-2 and occludin, all of which were dramatically rescued by RAGE inhibition. CONCLUSION RAGE signaling mediates airway epithelial barrier dysfunction in a LPS-induced ALI murine model.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Kai Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Bo Huang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Xilong Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Haixiong Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
13
|
Huang G, Su J, Zhao W, Deng Z, Wang P, Dong H, Zhao H, Cai S. JNK modulates RAGE/β-catenin signaling and is essential for allergic airway inflammation in asthma. Toxicol Lett 2021; 336:57-67. [PMID: 33075463 DOI: 10.1016/j.toxlet.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
As a leading cause of occupational asthma, toluene diisocyanate (TDI)-induced asthma is an inflammatory disease of the airways with one of the most significant characteristics involving inflammation, in which the receptor of advanced glycation end products (RAGE) plays an extremely important role. However, the mechanism underlying the upregulation of RAGE is still unknown. The aim of the present study was to examine whether JNK mediates β-catenin stabilization via activation of RAGE in asthma. Herein from the results by analyzing the blood from healthy donors and patients with asthma, it was found that the expression of RAGE and p-JNK is highly correlated and elevated concomitantly with the severity of bronchial asthma. Additionally, upon sensitizing and challenging the mice with TDI, we found that RAGE inhibitor (FPS-ZM1) and JNK inhibitor (SP600125) significantly reduced the TDI-induced asthma inflammation in vivo. Furthermore, SP600125 also considerably restored RAGE and p-JNK expression. Besides, the in vitro results from TDI-HSA treatment of 16HBE cells reveal that therapeutic inhibition of JNK reduced TDI driving RAGE expression and β-catenin translocation, while treatment with Anisomycin, a JNK agonist, showed the opposite effect. Moreover, genetic knockdown of RAGE does not contribute to JNK phosphorylation, indicating that JNK functions upstream of RAGE. Collectively, these findings highlight a role for JNK signaling in RAGE/β-catenin regulation and have important therapeutic implications for the treatment of TDI induced asthma.
Collapse
Affiliation(s)
- Guohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinwei Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhixuan Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Cui H, Cheng Y, He Y, Cheng W, Zhao W, Zhao H, Zhou FH, Wang L, Dong J, Cai S. The AKT inhibitor MK2206 suppresses airway inflammation and the pro‑remodeling pathway in a TDI‑induced asthma mouse model. Mol Med Rep 2020; 22:3723-3734. [PMID: 33000187 PMCID: PMC7533517 DOI: 10.3892/mmr.2020.11450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
The cellular and molecular mechanisms via which MK2206, an AKT inhibitor, prevents the activation of AKT in toluene diisocyanate (TDI)‑induced asthma remain unclear. Thus, the present study aimed to evaluate the potential effects of MK2206 on airway AKT activation, inflammation and remodeling in a TDI‑induced mouse model of asthma. A total of 24 BALB/c mice were selected and randomly divided into untreated (AOO), asthma (TDI), MK2206 (TDI + MK2206), and dexamethasone (TDI + DEX) groups. Phosphorylated AKT (p‑AKT), total AKT, airway remodeling indices, α‑smooth muscle actin (α‑SMA) and collagen I levels in pulmonary tissue were measured using western blotting. Airway inflammation factors, including interleukin (IL)‑4, ‑5, ‑6, and ‑13 in bronchoalveolar lavage fluid (BALF) and IgE in serum, were determined using ELISA. Additionally, the airway hyperresponsiveness (AHR) and pulmonary pathology of all groups were evaluated. The results of the present study demonstrated that p‑AKT levels in lung protein lysate were upregulated, and neutrophil, eosinophil and lymphocyte counts were increased in the lungs obtained from the asthma group compared with the AOO group. Both MK2206 and DEX treatment in TDI‑induced mice resulted not only in the attenuation of AKT phosphorylation, but also reductions in neutrophil, eosinophil and lymphocyte counts in the lungs of mice in the asthma group. Consistently, increases in the levels of the inflammatory cytokines IL‑4, ‑5, ‑6 and ‑13 analyzed in BALF, and serum IgE in the TDI group were demonstrated to be attenuated in the TDI + MK2206 and TDI + DEX groups. Furthermore, α‑SMA and AHR were significantly attenuated in the TDI + MK2206 group compared with the TDI group. These results revealed that MK2206 not only inhibited AKT activation, but also served a role in downregulating airway inflammation and airway remodeling in chemical‑induced asthma. Therefore, the findings of the present study may provide important insight into further combination therapy.
Collapse
Affiliation(s)
- Haiyan Cui
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Yi He
- Department of Immunology Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Weiying Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Wenqu Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Fiona H Zhou
- UniSA Clinical and Health Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Liping Wang
- UniSA Clinical and Health Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jianghui Dong
- UniSA Clinical and Health Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
15
|
Roles of PI3K pan-inhibitors and PI3K-δ inhibitors in allergic lung inflammation: a systematic review and meta-analysis. Sci Rep 2020; 10:7608. [PMID: 32376843 PMCID: PMC7203230 DOI: 10.1038/s41598-020-64594-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Meta-analysis can be applied to study the effectiveness of the summary estimates for experimental papers, producing objective and unbiased results. We investigated the effects of phosphoinositide-3-kinase (PI3K) on the inflammatory profile in allergic mouse models, which are currently under development in signal transduction materials. PubMed, EMBASE and Web of Science databases were searched for relevant literature using the search terms “ PI3K inhibitor” and “allergy” or “asthma”. Cochrane Review Manager and R were used for handling continuous variables. The primary outcomes of the inflammatory profile were divided into cell counts and inflammatory cytokines. We used a random effects model to draw a forest plot. Through the database search and subsequent selection, 17 articles were identified. Regarding the cell counts, both the PI3K pan-inhibitors and PI3K-δ inhibitors effectively reduced the total cell counts, eosinophils, neutrophils and lymphocytes. In contrast to PI3K-δ inhibitors, PI3K pan-inhibitors effectively reduced macrophages. Regarding the inflammatory cytokines, PI3K pan-inhibitors and PI3K-δ inhibitors effectively reduced total IgE, IL-4, IL-5, IL-13, TNF-α, IL-1β, VEGF and had no effect on IL-6. Compared to the PI3K pan-inhibitors, which block all pathways, selective PI3K-δ inhibitors are expected to be relatively less toxic. Regarding the efficacy, PI3K-δ inhibitors have at least the same or better efficacy than PI3K pan-inhibitors in effector cells and inflammatory mediators.
Collapse
|
16
|
Yao L, Chen S, Tang H, Huang P, Wei S, Liang Z, Chen X, Yang H, Tao A, Chen R, Zhang Q. Transient Receptor Potential Ion Channels Mediate Adherens Junctions Dysfunction in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol Sci 2020; 168:160-170. [PMID: 30517707 DOI: 10.1093/toxsci/kfy285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruption of epithelial cell-cell junctions is essential for the initiation and perpetuation of airway inflammation in asthma. We've previously reported compromised epithelial barrier integrity in a toluene diisocyanate (TDI)-induced occupational asthma model. This study is aimed to explore the role of transient receptor potential vanilloid 4 (TRPV4) and transient receptor potential ankyrin 1 (TRPA1) in the dysfunction of adherens junctions in TDI-induced asthma. Mice were sensitized and challenged with TDI for a chemical-induced asthma model. Selective blockers of TRPV4 glycogen synthase kinase (GSK)2193874, 5 and 10 mg/kg) and TRPA1 (HC030031, 10 and 20 mg/kg) were intraperitoneally given to the mice. Immunohistochemistry revealed different expression pattern of TRPV4 and TRPA1 in lung. TDI exposure increased TRPV4 expression in the airway, which can be suppressed by GSK2193874, while treatment with neither TDI alone nor TDI together with HC030031 led to changes of TRPA1 expression in the lung. Blocking either TRPV4 or TRPA1 blunted TDI-induced airway hyperreactivity, airway neutrophilia and eosinophilia, as well as Th2 responses in a dose-dependent manner. At the same time, membrane levels of E-cadherin and β-catenin were significantly decreased after TDI inhalation, which were inhibited by GSK2193874 or HC030031. Moreover, GSK2193874 and HC030031 also suppressed serine phosphorylation of glycogen synthase kinase 3β, tyrosine phosphorylation of β-catenin, as well as activation and nuclear transport of β-catenin in mice sensitized and challenged with TDI. Our study suggested that both TRPV4 and TRPA1 contribute critically to E-cadherin and β-catenin dysfunction in TDI-induced asthma, proposing novel therapeutic targets for asthma.
Collapse
Affiliation(s)
- Lihong Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
| | - Shuyu Chen
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Haixiong Tang
- Department of Respiratory Medicine, Minzu Hospital of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning 530001, China
| | - Peikai Huang
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Shushan Wei
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongyu Yang
- Division of Respirology, Department of Medicine, McMaster University, Firestone Institute for Respiratory Health (FIRH), The Research Institution of St. Joe's Hamilton (RISH), St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University
| | - Qingling Zhang
- State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
17
|
Liu J, Chen Y, Zhang F, Peng X, Mao X, Lu W, Wu R, Huang B, Bao Y, Ma L, Huang Y, Zhang X. Divergent Roles of miR-3162-3p in Pulmonary Inflammation in Normal and Asthmatic Mice as well as Antagonism of miR-3162-3p in Asthma Treatment. Int Arch Allergy Immunol 2020; 181:594-605. [PMID: 32610326 DOI: 10.1159/000507250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miRNA) mimics or antagomirs hold great promise for asthma treatment compared with glucocorticoids as mainstay therapy for asthma. But the role of miRNA in regulating asthmatic inflammation is largely unclear. We previously reported that miR-3162-3p in the peripheral blood of children with asthma was obviously upregulated compared to that in healthy children. This study aimed to elucidate the role of miR-3162-3p in pulmonary inflammation in normal and asthmatic mice as well as preliminarily explore the potential of miR-3162-3p antagomir in asthma treatment. A noninvasive whole-body plethysmograph measured airway responsiveness. Both qRT-PCR and Western blot were used to detect the expression of miRNA, mRNA, or protein. Cells in bronchoalveolar lavage fluid were counted by platelet counting and Wright's staining. Inflammatory infiltration and mucus secretion were identified by hematoxylin and eosin and periodic acid-Schiff staining, respectively. Cytokines in the lungs were detected by ELISA. The miR-3162-3p mimic intraperitoneally administered to normal mice decreased β-catenin levels in the lungs without obviously altering the lung histology and cytokine levels. Antagonizing miR-3162-3p in ovalbumin-induced asthmatic mice effectively alleviated the typical features of asthma, such as airway hyper-responsiveness, airway inflammation, and Th1/Th2 cytokine imbalance, and concomitantly rescued the total and active β-catenin expression. Collectively, we discovered divergent roles of miR-3162-3p in lung inflammation between normal and asthmatic mice. The anti-inflammatory effects of the miR-3162-3p antagomir were comparable to those of glucocorticoid treatment. Our study helped in understanding the contribution of miRNAs to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Juman Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yinhui Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Zhang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xi Peng
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoning Mao
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Weihong Lu
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical College, Weihui, China
| | - Ruijian Wu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Binglong Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Lian Ma
- Department of Hematology and Oncology, and Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China,
| | - Xingliang Zhang
- Department of Hematology and Oncology, and Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
- Department of Pediatric Surgery, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
18
|
Ye C, Huang C, Zou M, Hu Y, Luo L, Wei Y, Wan X, Zhao H, Li W, Cai S, Dong H. The role of secreted Hsp90α in HDM-induced asthmatic airway epithelial barrier dysfunction. BMC Pulm Med 2019; 19:218. [PMID: 31747880 PMCID: PMC6868813 DOI: 10.1186/s12890-019-0938-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. METHODS Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. RESULTS HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. CONCLUSIONS Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.
Collapse
Affiliation(s)
- Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chaowen Huang
- Department of Respiratory Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, People's Republic of China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yahui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lishan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yilan Wei
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck, Medical Centre, Los Angeles, CA, 90033, USA
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
19
|
Zhao W, Lin Y, Xiong J, Wang Y, Huang G, Deng Q, Yao L, Yu C, Dong H, Cai S, Zhao H. RAGE mediates β-catenin stabilization via activation of the Src/p-Cav-1 axis in a chemical-induced asthma model. Toxicol Lett 2018; 299:149-158. [PMID: 30261222 DOI: 10.1016/j.toxlet.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
We previously demonstrated receptor for advanced glycation end products (RAGE) was required for β-catenin stabilization in a toluene diisocyanate (TDI)-induced asthma model, suggesting it plays an important role in TDI-induced airway inflammation. The aim of this study was to examine whether RAGE mediates β-catenin stabilization via activation of the Src/p-Cav-1 axis in TDI-induced asthma model. To generate a chemical-induced asthma model, male BALB/c mice were sensitized and challenged with TDI. Before each challenge, FPS-ZM1 (RAGE inhibitor) and PP2 (Src inhibitor) was given via intraperitoneal injection. In the TDI-exposed mice, airway reactivity, airway inflammation, goblet cell metaplasia, and the release of Th2 cytokines and IgE increased significantly. The level of membrane β-catenin decreased but was increased in the cytoplasm. Increased expression of RAGE, p-Src, and p-Cav-1 was also detected in TDI-exposed lungs. However, all these changes were inhibited by FPS-ZM1 and PP2. In TDI-HSA stimulated human airway epithelial (16HBE) cells, the expression of p-Src and p-Cav-1, and the abnormal distribution of β-catenin were significantly increased, and then inhibited in RAGE knockdown cells. Similarly, PP2 or non-phosphorylatable Cav-1 mutant (Y14F-Cav-1) treated 16HBE cells had the same effect on the distribution of β-catenin. In addition, blockage of RAGE signaling and phosphorylation of Cav-1 eliminated the translocation of β-catenin from cytomembrane to cytoplasm. Our results showed that RAGE modulates β-catenin aberrant distribution via activation of Src/p-Cav-1 in a chemical-induced asthma model.
Collapse
Affiliation(s)
- Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yun Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Xiong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Guohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qiuhua Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lihong Yao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Sulaiman I, Tan K, Mohtarrudin N, Lim JCW, Stanslas J. Andrographolide prevented toluene diisocyanate-induced occupational asthma and aberrant airway E-cadherin distribution via p38 MAPK-dependent Nrf2 induction. Pulm Pharmacol Ther 2018; 53:39-51. [PMID: 30244166 DOI: 10.1016/j.pupt.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/11/2018] [Accepted: 09/20/2018] [Indexed: 01/25/2023]
Abstract
Toluene diisocyanate (TDI) is a major cause of chemical-induced occupational asthma, which contributes about 15% of global asthma burden. Resistance and compounded side effects associated with the use of corticosteroid in asthma necessitate the search for alternative drugs. Andrographolide (AGP), a naturally occurring diterpene lactone is known to exhibit various bioactivities. Its ability to ameliorate cardinal features of allergic asthma was previously suggested in an eosinophilic asthma endotype. However, its potential antiasthma activity and mechanism of action in a neutrophilic occupational asthma model, as well as its effect on epithelial dysfunction remain unknown. BALB/c mice were dermally sensitised with 0.3% TDI or acetone olive oil (AOO) vehicle on day 1 and 8, followed by 0.1% TDI intranasal challenge on days 15, 18 and 21. Endpoints were evaluated via bronchoalveolar lavage fluid (BALF) cell analysis, 2',7'-dichlorofluorescein diacetate (DCFDA) assays, immunoblotting, immunohistochemistry and methacholine challenge test. Decreases in total and differential leukocyte counts of BALF were recorded in AGP-treated animals. The compound dose-dependently reduced intracellular de-esterification of DCFDA, thus suggesting AGP's potential to inhibit intracellular reactive oxygen species (ROS). Mechanistically, the treatment prevented TDI-induced aberrant E-cadherin distribution and restored airway epithelial β-catenin at cell to cell contact site. Furthermore, AGP ameliorated TDI induced pulmonary collagen deposition. In addition, the treatment significantly upregulated pulmonary HO-1, Nrf2 and phospho-p38 levels. Airway hyperresponsiveness was markedly suppressed among AGP-treated animals. Collectively, these findings suggest AGP's protective function against TDI-induced airway epithelial barrier dysfunction and oxidative lung damage possibly through the upregulation of adherence junction proteins and the activation of p38/Nrf2 signalling. This study elucidates the therapeutic potential of AGP in the control and management of chemical-induced allergic asthma. To the best of our knowledge, the potential anti-asthma activity of AGP in TDI-induced occupational asthma has not been reported previously.
Collapse
Affiliation(s)
- Ibrahim Sulaiman
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khaishin Tan
- Department of Pharmaceutical Chemistry, International Medical University, Kuala Lumpur, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Wang Y, Le Y, Zhao W, Lin Y, Wu Y, Yu C, Xiong J, Zou F, Dong H, Cai S, Zhao H. Short Thymic Stromal Lymphopoietin Attenuates Toluene Diisocyanate-induced Airway Inflammation and Inhibits High Mobility Group Box 1-Receptor for Advanced Glycation End Products and Long Thymic Stromal Lymphopoietin Expression. Toxicol Sci 2018; 157:276-290. [PMID: 28329851 DOI: 10.1093/toxsci/kfx043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Short thymic stromal lymphopoietin (short TSLP), one of TSLP variants, exerts anti-inflammatory activities in endotoxin shock and colitis mouse models. Our latest work reported that short TSLP prevented house dust mite-induced epithelial barrier disruption. Yet the role of short TSLP in toluene diisocyanate (TDI)-induced asthma is unknown. Male BALB/c mice were sensitized and challenged with TDI to generate a chemical-induced asthma model. Synthetic short TSLP peptides were given intranasally or intraperitoneally before each challenge. TDI significantly increased inflammation and hyperresponsiveness of airway, which were suppressed by short TSLP treatment. Levels of mouse TSLP, high mobility group box 1 (HMGB1), and receptor for advanced glycation end products (RAGE) in airway epithelium and whole lung tissues were markedly increased in TDI group compared with control mice, which were decreased after administration of short TSLP. Meanwhile, short TSLP also inhibited STAT5(Y694) phosphorylation, which was highly expressed in airways of TDI-exposure mice. In vitro, both TDI-human serum albumin (HSA) and recombinant human (rh) HMGB1 promoted long TSLP but not short TSLP gene production in human bronchial epithelial cells (16HBE). Cells pre-treated with short TSLP exhibited less expression of RAGE and long TSLP and lower phosphorylation of Akt(S473), p38 MAPK(T180/Y182), and STAT5(Y694) than stimulated with TDI-HSA or rhHMGB1 alone. Results suggest that short TSLP prevents airway inflammation in a chemical-induced asthma model, which might be associated with the inhibitions of HMGB1-RAGE and long TSLP expression and STAT5(Y694) phosphorylation.
Collapse
Affiliation(s)
- Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqing Le
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
熊 婧, 赵 文, 黄 国, 姚 利, 董 航, 余 常, 赵 海, 蔡 绍. [Receptor for advanced glycation end products upregulates MUC5AC expression and promotes mucus overproduction in mice with toluene diisocyanate-induced asthma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1301-1307. [PMID: 29070458 PMCID: PMC6743949 DOI: 10.3969/j.issn.1673-4254.2017.10.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To explore the role of the receptor for advanced glycation end products (RAGE) in regulating the expression of MUC5AC and mucus production in a mouse model of toluene diisocyanate (TDI)?induced asthma. METHODS BALB/c mice were randomly divided into control group, vehicle (AOO) group, TDI?induced asthma group and RAGE inhibitor (FPS?ZM1) group. PAS staining, Western blotting, and immunohistochemistry were used to analyze the changes in mucus production and MUC5AC expression in the airway of the mice, and the expression of p?ERK was detected with Western blotting. In vitro cultured human bronchial epithelial cell line 16HBE was transfected with lentiviral vector carrying short hairpin RNA targeting RAGE (shRNA?RAGE) and subsequently challenged with a TDI?human serum albumin (TDI-HSA) conjugate, and the changes in cellular MUC5AC mRNA expression as detected using RT-PCR; the protein expressions of ERK and p?ERK in the cells were examined with Western blotting. The effect of ERK inhibitor U0126 pretreatment on MUC5AC mRNA expression was also analyzed in the cells. RESULTS Compared with the control mice, TDI-induced asthmatic mice showed significantly higher rates of PAS positivity and increased MUC5AC and p?ERK expressions in the airway (P<0.05). Treatment with FPS?ZM1 significantly decreased PAS positivity and lowered MUC5AC and p?ERK expressions in the airway of the asthmatic mice (P<0.05). Exposure of 16HBE cells to TDI?HSA caused a significant increase in MUC5AC mRNA expression and p?ERK protein expression (P<0.05), while RAGE knockdown obviously suppressed TDI?HSA-induced upregulation of p-ERK and MUC5AC mRNA (P<0.05). Treatment with the ERK inhibitor U0126 also lowered TDI?HSA?induced up?regulation of MUC5AC mRNA in the cells (P<0.05). CONCLUSION RAGE signaling induces MUC5AC expression via extracellular signal-regulated kinase pathway to promote mucus overproduction in mice with TDI-induced asthma.
Collapse
Affiliation(s)
- 婧 熊
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 文驱 赵
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 国华 黄
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 利红 姚
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 常辉 余
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 海金 赵
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 绍曦 蔡
- />南方医科大学南方医院呼吸与危重症医学科//慢性气道疾病实验室, 广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
24
|
Yao L, Zhao H, Tang H, Xiong J, Zhao W, Liu L, Dong H, Zou F, Cai S. Blockade of β-catenin signaling attenuates toluene diisocyanate-induced experimental asthma. Allergy 2017; 72:579-589. [PMID: 27624805 DOI: 10.1111/all.13045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Aberrant activation of β-catenin signaling by both WNT-dependent and WNT-independent pathways has been demonstrated in asthmatic airways, which is thought to contribute critically in remodeling of the airways. Yet, the exact role of β-catenin in asthma is very poorly defined. As we have previously reported abnormal expression of β-catenin in a toluene diisocyanate (TDI)-induced asthma model, in this study, we evaluated the therapeutic efficacy of two small molecules XAV-939 and ICG-001 in TDI-asthmatic male BALB/c mice, which selectively block β-catenin-mediated transcription. METHODS Male BALB/c mice were sensitized and challenged with TDI to generate a chemically induced asthma model. Inhibitors of β-catenin, XAV-939, and ICG-001 were respectively given to the mice through intraperitoneally injection. RESULTS TDI exposure led to a significantly increased activity of β-catenin, which was then confirmed by a luciferase assay in 16HBE transfected with the TOPFlash reporter plasmid. Treatment with either XAV-939 or ICG-001 effectively inhibited activation of β-catenin and downregulated mRNA expression of β-catenin-targeted genes in TDI-asthmatic mice, paralleled by dramatically attenuated TDI-induced hyperresponsiveness and inflammation of the airway, alleviated airway goblet cell metaplasia and collagen deposition, decreased Th2 inflammation, as well as lower levels of TGFβ1, VEGF, HMGB1, and IL-1β. CONCLUSION The results showed that β-catenin is a principal mediator of TDI-induced asthma, proposing β-catenin as a promising therapeutic target in asthma.
Collapse
Affiliation(s)
- L. Yao
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - H. Zhao
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - H. Tang
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - J. Xiong
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - W. Zhao
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - L. Liu
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - H. Dong
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - F. Zou
- School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou China
| | - S. Cai
- Department of Respiratory and Critical Care Medicine; Chronic Airways Diseases Laboratory; Nanfang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
25
|
Yao L, Zhao H, Tang H, Liang J, Liu L, Dong H, Zou F, Cai S. The receptor for advanced glycation end products is required for β-catenin stabilization in a chemical-induced asthma model. Br J Pharmacol 2016; 173:2600-13. [PMID: 27332707 DOI: 10.1111/bph.13539] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cytoplasmic retention of β-catenin will lead to its nuclear translocation and subsequent interaction with the transcription factor TCF/LEF that regulates target gene expression. We have previously demonstrated aberrant expression of β-catenin in a model of asthma induced by toluene diisocyanate (TDI). The aim of this study was to examine whether the receptor for advanced glycation end products (RAGE) can regulate β-catenin expression in TDI-induced asthma. EXPERIMENTAL APPROACH Male BALB/c mice were sensitized and challenged with TDI to generate a chemically-induced asthma model. Inhibitors of RAGE, FPS-ZM1 and the RAGE antagonist peptide (RAP), were injected i.p. after each challenge. Airway resistance was measured in vivo and bronchoalveolar lavage fluid was analysed. Lungs were examined by histology and immunohistochemistry. Western blotting and quantitative PCR were also used. KEY RESULTS Expression of RAGE and of its ligands HMGB1, S100A12, S100B, HSP70 was increased in TDI-exposed lungs. These increases were inhibited by FPS-ZM1 or RAP. Either antagonist blunted airway reactivity, airway inflammation and goblet cell metaplasia, and decreased release of Th2 cytokines. TDI exposure decreased level of membrane β-catenin, phosphorylated Akt (Ser(473) ), inactivated GSK3β (Ser(9) ), dephosphorylated β-catenin at Ser(33) /(37) /Thr(41) , which controls its cytoplasmic degradation, increased phosphorylated β-catenin at Ser(552) , raised cytoplasmic and nuclear levels of β-catenin and up-regulated its targeted gene expression (MMP2, MMP7, MMP9, VEGF, cyclin D1, fibronectin), all of which were reversed by RAGE inhibition. CONCLUSION AND IMPLICATIONS RAGE was required for stabilization of β-catenin in TDI-induced asthma, identifying protective effects of RAGE blockade in this model.
Collapse
Affiliation(s)
- Lihong Yao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixiong Tang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Liang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
MiR-3162-3p Is a Novel MicroRNA That Exacerbates Asthma by Regulating β-Catenin. PLoS One 2016; 11:e0149257. [PMID: 26959414 PMCID: PMC4784915 DOI: 10.1371/journal.pone.0149257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Asthma is a common chronic respiratory disease. In a previous study, we found several circulating microRNA signatures associated with childhood asthma and selected miR-3162-3p for subsequent studies. Since the target proteins and underlying molecular mechanisms of miR-3162-3p in asthma etiopathogenesis are not well characterized, we designed this study to clarify its role. We employed bioinformatics and quantitative PCR methods as a first step to determine the target of miR-3162-3p, and we elucidated β-catenin. Luciferase assays and western blot analysis confirmed β-catenin as a direct target of miR-3162-3p as the 3'-untranslated region of β-catenin mRNA possesses a specific miR-3162-3p pairing site. The correlation between the expression levels of miR-3162-3p and β-catenin is confirmed by quantitative PCR and western blot studies in A549, Beas-2B and H1299 cell lines and OVA-induced asthma mouse model. Of note, upregulation of the endogenous miR-3162-3p level is concomitant with the reduction of β-catenin mRNA and protein expression levels. MiR-3162-3p antagomir treatment antagonizes the endogenous miR-3162-3p and effectively rescues the attenuation of endogenous β-catenin in OVA-induced asthmatic mice, which alleviates airway hyperresponsiveness and ameliorates airway inflammation. Collectively, our findings suggest a novel relationship between miR-3162-3p and β-catenin and clarify their mechanistic role in asthma etiopathogenesis.
Collapse
|