1
|
Moura RDD, Mattos PDD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. Genet Mol Biol 2024; 47Suppl 1:e20230357. [PMID: 39356140 PMCID: PMC11445734 DOI: 10.1590/1678-4685-gmb-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/16/2024] [Indexed: 10/03/2024] Open
Abstract
Regulated cell death by a non-apoptotic pathway known as parthanatos is increasingly recognised as a central player in pathological processes, including ischaemic tissue damage and neurodegenerative diseases. Parthanatos is activated under conditions that induce high levels of DNA damage, leading to hyperactivation of the DNA damage sensor PARP1. While this strict dependence on PARP1 activation is a defining feature of parthanatos that distinguishes it from other forms of cell death, the molecular events downstream of PARP1 activation remain poorly understood. In this mini-review, we highlight a number of important questions that remain to be answered about this enigmatic form of cell death.
Collapse
Affiliation(s)
- Rafael Dias de Moura
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| | | | | | - Nícolas Carlos Hoch
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Schnuelle P, Krämer BK. Donor Conditioning and Organ Pre-Treatment Prior to Kidney Transplantation: Reappraisal of the Available Clinical Evidence. J Clin Med 2024; 13:4073. [PMID: 39064113 PMCID: PMC11278301 DOI: 10.3390/jcm13144073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic measures aimed at optimising organ function prior to transplantation-whether by conditioning the donor after determination of brain death or by improving organ preservation after kidney removal-have the potential to enhance outcomes after transplantation. The particular advantage is that, unlike any optimised immunosuppressive therapy, a favourable effect can be achieved without side effects for the organ recipient. In recent years, several such measures have been tested in controlled clinical trials on large patient cohorts following kidney transplantation. Hypothermic pulsatile machine perfusion, in particular, has become the focus of interest, but interventions in the donor prior to organ removal, such as the administration of low-dose dopamine until the start of cold perfusion as an example of conditioning antioxidant therapy and therapeutic donor hypothermia in the intensive care unit after brain death confirmation, have also significantly reduced the frequency of dialysis after transplantation with far less effort and cost. With regard to benefits for graft survival, the database for all procedures is less clear and controversial. The aim of this review article is to re-evaluate the available clinical evidence from large multicentre controlled trials, which have also significantly influenced later meta-analyses, and to assess the significance for use in routine clinical practice.
Collapse
Affiliation(s)
- Peter Schnuelle
- Center for Renal Diseases, Academic Teaching Practice of the University Medical Center Mannheim, University of Heidelberg, 69469 Weinheim, Germany
- Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| | - Bernhard K. Krämer
- Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| |
Collapse
|
3
|
Yan J, Günter A, Das S, Mühlfriedel R, Michalakis S, Jiao K, Seeliger MW, Paquet-Durand F. Inherited Retinal Degeneration: PARP-Dependent Activation of Calpain Requires CNG Channel Activity. Biomolecules 2022; 12:biom12030455. [PMID: 35327647 PMCID: PMC8946186 DOI: 10.3390/biom12030455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of blinding diseases, typically involving a progressive loss of photoreceptors. The IRD pathology is often based on an accumulation of cGMP in photoreceptors and associated with the excessive activation of calpain and poly (ADP-ribose) polymerase (PARP). Inhibitors of calpain or PARP have shown promise in preventing photoreceptor cell death, yet the relationship between these enzymes remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type and IRD-mutant mice were treated with inhibitors specific for calpain, PARP, and voltage-gated Ca2+ channels (VGCCs). The outcomes were assessed using in situ activity assays for calpain and PARP and immunostaining for activated calpain-2, poly (ADP-ribose), and cGMP, as well as the TUNEL assay for cell death detection. The IRD models included the Pde6b-mutant rd1 mouse and rd1*Cngb1−/− double-mutant mice, which lack the beta subunit of the rod cyclic nucleotide-gated (CNG) channel and are partially protected from rd1 degeneration. We confirmed that an inhibition of either calpain or PARP reduces photoreceptor cell death in rd1 retina. However, while the activity of calpain was decreased by the inhibition of PARP, calpain inhibition did not alter the PARP activity. A combination treatment with calpain and PARP inhibitors did not synergistically reduce cell death. In the slow degeneration of rd1*Cngb1−/− double mutant, VGCC inhibition delayed photoreceptor cell death, while PARP inhibition did not. Our results indicate that PARP acts upstream of calpain and that both are part of the same degenerative pathway in Pde6b-dependent photoreceptor degeneration. While PARP activation may be associated with CNG channel activity, calpain activation is linked to VGCC opening. Overall, our data highlights PARP as a target for therapeutic interventions in IRD-type diseases.
Collapse
Affiliation(s)
- Jie Yan
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Günter
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80539 München, Germany;
| | - Kangwei Jiao
- Key Laboratory of Yunnan Province, Affiliated Hospital of Yunnan University, Kunming 650051, China;
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
- Correspondence: (M.W.S.); (F.P.-D.)
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
- Correspondence: (M.W.S.); (F.P.-D.)
| |
Collapse
|
4
|
PCNA inhibition enhances the cytotoxicity of β-lapachone in NQO1-Positive cancer cells by augmentation of oxidative stress-induced DNA damage. Cancer Lett 2021; 519:304-314. [PMID: 34329742 DOI: 10.1016/j.canlet.2021.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022]
Abstract
β-Lapachone is a classic quinone-containing antitumor NQO1-bioactivatable drug that directly kills NQO1-overexpressing cancer cells. However, the clinical applications of β-lapachone are primarily limited by its high toxicity and modest lethality. To overcome this side effect and expand the therapeutic utility of β-lapachone, we demonstrate the effects of a novel combination therapy including β-lapachone and the proliferating cell nuclear antigen (PCNA) inhibitor T2 amino alcohol (T2AA) on various NQO1+ cancer cells. PCNA has DNA clamp processivity activity mediated by encircling double-stranded DNA to recruit proteins involved in DNA replication and DNA repair. In this study, we found that compared to monotherapy, a nontoxic dose of the T2AA synergized with a sublethal dose of β-lapachone in an NQO1-dependent manner and that combination therapy prevented DNA repair, increased double-strand break (DSB) formation and promoted programmed necrosis and G1 phase cell cycle arrest. We further determined that combination therapy enhanced antitumor efficacy and prolonged survival in Lewis lung carcinoma (LLC) xenografts model. Our findings show novel evidence for a new therapeutic approach that combines of β-lapachone treatment with PCNA inhibition that is highly effective in treating NQO1+ solid tumor cells.
Collapse
|
5
|
Cheng KJ, Liang WZ. Influence of a bearing-wastewater phenolic compound (3,4-dimethylphenol, 3,4-DMP) treatment on Ca 2+ homeostasis and its related cytotoxicity in human proximal renal tubular epithelial cells. Hum Exp Toxicol 2021; 40:1899-1908. [PMID: 33906515 DOI: 10.1177/09603271211013453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lot of phenolic compounds are widespread in industrial effluents and they are considerable environmental pollutants. Being a compound commercially available, the effect of a bearing-wastewater phenolic compound 3,4-dimethylphenol (3,4-DMP) on Ca2+ homeostasis and its related physiology has not been explored in cultured human kidney cell models. The aim of this study was to explore the effect of 3,4-DMP on [Ca2+]i and viability in HK-2 human proximal renal tubular epithelial cells. In terms of Ca2+ signaling, 3,4-DMP (5-100 μM) induced [Ca2+]i rises only in HK-2 cells and Ca2+ removal reduced the signal by 40%. In Ca2+-containing medium, 3,4-DMP-induced Ca2+ entry was inhibited by 20% by a modulator of store-operated Ca2+ channels (2-APB), and by a PKC activator (PMA) and inhibitor (GF109203X). Moreover, 3,4-DMP-induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+-free medium, inhibition of PLC with U73122 abolished 3,4-DMP-induced [Ca2+]i rises. Furthermore, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished 3,4-DMP-evoked [Ca2+]i rises. Conversely, treatment with 3,4-DMP abolished thapsigargin-evoked [Ca2+]i rises. Regarding to cell viability, 3,4-DMP (60-140 μM) killed cells in a concentration-dependent fashion in HK-2 cells. Chelation of cytosolic Ca2+ with BAPTA-AM partially reversed cytotoxicity of 3,4-DMP. Collectively, our data suggest that in HK-2 cells, 3,4-DMP-induced [Ca2+]i rises by evoking Ca2+ entry via PKC-sensitive store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. 3,4-DMP also caused cytotoxicity that was linked to preceding [Ca2+]i rises. Our findings provide new insight into the cytotoxic effects of 3,4-DMP and the possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- K-J Cheng
- Department of Nephrology, 210825Kaohsiung Municipal United Hospital, Kaohsiung.,Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Pharmacy and Master Program, College of Pharmacy and Health Care, 63299Tajen University, Pingtung County, Taiwan
| |
Collapse
|
6
|
Song S, Lee JY, Ermolenko L, Mazumder A, Ji S, Ryu H, Kim H, Kim DW, Lee JW, Dicato M, Christov C, Schnekenburger M, Cerella C, Gérard D, Orlikova-Boyer B, Al-Mourabit A, Diederich M. Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia. Cell Death Dis 2020; 11:109. [PMID: 32034134 PMCID: PMC7007439 DOI: 10.1038/s41419-020-2304-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
By comparing imatinib-sensitive and -resistant chronic myeloid leukemia (CML) cell models, we investigated the molecular mechanisms by which tetrahydrobenzimidazole derivative TMQ0153 triggered caspase-dependent apoptosis at low concentrations accompanied by loss of mitochondrial membrane potential (MMP) and increase of cytosolic free Ca2+ levels. Interestingly, at higher concentrations, TMQ0153 induced necroptotic cell death with accumulation of ROS, both preventable by N-acetyl-L-cysteine (NAC) pretreatment. At necroptosis-inducing concentrations, we observed increased ROS and decreased ATP and GSH levels, concomitant with protective autophagy induction. Inhibitors such as bafilomycin A1 (baf-A1) and siRNA against beclin 1 abrogated autophagy, sensitized CML cells against TMQ0153 and enhanced necroptotic cell death. Importantly, TMQ153-induced necrosis led to cell surface exposure of calreticulin (CRT) and ERp57 as well as the release of extracellular ATP and high mobility group box (HMGB1) demonstrating the capacity of this compound to release immunogenic cell death (ICD) markers. We validated the anti-cancer potential of TMQ0153 by in vivo inhibition of K562 microtumor formation in zebrafish. Taken together, our findings provide evidence that cellular stress and redox modulation by TMQ0153 concentration-dependently leads to different cell death modalities including controlled necrosis in CML cell models.
Collapse
Affiliation(s)
- Sungmi Song
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - Jin-Young Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - Ludmila Ermolenko
- Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190, Gif-sur-Yvette, France
| | - Aloran Mazumder
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - Seungwon Ji
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - Heeju Ryu
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - HyeJin Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - Dong-Wook Kim
- Catholic University, Seoul St. Mary's Hospital, Banpo dong 505, Seocho Gu, Seoul, Korea
| | - Jung Weon Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, and INSERM U1256 NGERE, 54000, Nancy, France
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Claudia Cerella
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea.,Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Barbora Orlikova-Boyer
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea.,Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Ali Al-Mourabit
- Département SNCM (Substances Naturelles et Chimie Médicinale), ICSN-CNRS, LabEx LERMIT, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse (Bat. 27), 91190, Gif-sur-Yvette, France.
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Korea.
| |
Collapse
|
7
|
TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull 2019; 155:48-60. [PMID: 31794795 DOI: 10.1016/j.brainresbull.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is one of the most common neurological conditions. Recent findings suggest that one of the mechanisms promoting its existence is calcium influx. The transient receptor potential melastatin type 2 channel (TRPM2) is a Ca2+-permeable cation channel that contributes to cell apoptosis; its possible signaling pathway is the PARP1/BNIP3/AIF/Endo G pathway that may be related to epilepsy. The aim of this study was to investigate the TRPM2 channel's involvement in epilepsy and how it works. We also explored the possible role of the TRPM2 channel on cognitive ability and emotion in epilepsy. To accomplish our goals, we used different animal epilepsy models to study the effect of the TRPM2 channel on epilepsy. The results showed that the knockout (KO) of the TRPM2 gene might play a protective role in epilepsy. Considering the advantages attributed to pentylenetetrazole (PTZ)-induced kindling mouse model, we used the model for the following assessments: 1. to observe changes in cognition and anxiety between wild type (WT) mice and TRPM2-KO mice with the recognition of new things trial and elevated plus-maze; 2. to determine the expression of apoptosis-associated proteins (PARP1, BNIP3, AIF, and Endo G) using Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot; 3. to observe neurons pathologic damages and astrocyte activation in each group. The main findings of our study were: (a) TRPM2-KO had a protective effect on epilepsy; (b) TRPM2-KO improved spatial memory deficits overtime during epilepsy, but it did not improve anxiety; (c) the protective effect probably occurred via the PARP1 downstream signaling pathway; (d) TRPM2-KO could ameliorate epilepsy-induced hippocampal pathological damages and weaken astrocyte activation. These findings may provide a new approach for the treatment of epilepsy and early intervention.
Collapse
|
8
|
Islas-Robles A, Yedlapudi D, Lau SS, Monks TJ. Toxicoproteomic Analysis of Poly(ADP-ribose)-associated Proteins Induced by Oxidative Stress in Human Proximal Tubule Cells. Toxicol Sci 2019; 171:117-131. [PMID: 31165168 DOI: 10.1093/toxsci/kfz131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/26/2019] [Indexed: 11/14/2022] Open
Abstract
2,3,5-Tris-(glutathion-S-yl)hydroquinone (TGHQ) is a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone. TGHQ generates ROS, causing DNA strand breaks, hyperactivation of PARP-1, increases in intracellular calcium ([Ca2+]i), and cell death. PARP-1 catalyzes the attachment of ADP-ribose polymers (PAR) to target proteins. In human kidney proximal tubule cells (HK-2), ROS-mediated PARP-1 hyperactivation and elevations in [Ca2+]i are reciprocally coupled. The molecular mechanism of this interaction is unclear. The aim of the present study was to identify ROS-induced PAR-associated proteins to further understand their potential role in cell death. PAR-associated proteins were enriched by immunoprecipitation, identified by LC-MS/MS, and relative abundance was obtained by spectral counting. 356 proteins were PAR-modified following TGHQ treatment. 13 proteins exhibited gene ontology annotations related to calcium. Among these proteins, the general transcription factor II-I (TFII-I) is directly involved in the modulation of [Ca2+]i. TFII-I binding to phospholipase C (PLC) leads to calcium influx via the TRPC3 channel. However, inhibition of TRPC3 or PLC had no effect on TGHQ-mediated cell death, suggesting that their loss of function may be necessary but insufficient to cause cell death. Nevertheless, TGHQ promoted a time-dependent translocation of TFII-I from the nucleus to the cytosol concomitant with a decrease in tyrosine phosphorylation in α/β-TFII-I. Therefore it is likely that ROS have an important impact on the function of TFII-I, such as regulation of transcription, and DNA translesion synthesis. Our data also sheds light on PAR mediated signaling during oxidative stress, and contributes to the development of strategies to prevent PAR-dependent cell death.
Collapse
Affiliation(s)
- Argel Islas-Robles
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| | - Deepthi Yedlapudi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| | - Serrine S Lau
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| |
Collapse
|
9
|
Impact of Donor Core Body Temperature on Graft Survival After Heart Transplantation. Transplantation 2019; 102:1891-1900. [PMID: 29994980 DOI: 10.1097/tp.0000000000002337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND A previous donor intervention trial found that induction of mild therapeutic hypothermia in the brain-dead donor reduced the dialysis requirement after kidney transplantation. Consequences on the performance of cardiac allografts after transplantation were not explored to date. METHODS Cohort study investigating 3-year heart allograft survival according to spontaneous core body temperature (CBT) assessed on the day of organ procurement. The study is nested in the database of the randomized trial of donor pretreatment with low-dose dopamine (ClinicalTrials.gov identifier: NCT000115115). RESULTS Ninety-nine heart transplant recipients who had received a cardiac allograft from a multiorgan donor enrolled in the dopamine trial were grouped by tertiles of the donor's CBT assessed by a mere temperature reading 4 to 20 hours before procurement (lowest, 32.0-36.2°C; middle, 36.3-36.8°C; highest, 36.9-38.8°C). Baseline characteristics considering demographics of donors and recipients, concomitant donor treatments, donor hemodynamic, and respiratory parameters as well as underlying cardiac diseases in recipients, pretransplant hemodynamic assessments, including pretransplant inotropic/mechanical support, urgency, and waiting time were similar. A lower CBT was associated with inferior heart allograft survival (hazard ratio, 0.53; 95% confidence interval, 0.31-0.93, per tertile; P = 0.02, and hazard ratio, 0.68; 95% confidence interval, 0.50-0.93°C; P = 0.02) when CBT was included as continuous explanatory variable in the Cox regression analysis. CONCLUSIONS A lower CBT in the brain-dead donor before procurement may associate with an unfavorable clinical course after heart transplantation. More research is required, before therapeutic hypothermia can routinely be used in multiorgan donors when a cardiac transplantation is intended.
Collapse
|
10
|
Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 2018; 9:932. [PMID: 30224699 PMCID: PMC6141459 DOI: 10.1038/s41419-018-0996-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Parthanatos is a new form of programmed cell death. It has been recognized to be critical in cerebral ischemia–reperfusion injury, and reactive oxygen species (ROS) can induce parthanatos. Recent studies found that propofol, a widely used intravenous anesthetic agent, has an inhibitory effect on ROS and has neuroprotective in many neurological diseases. However, the functional roles and mechanisms of propofol in parthanatos remain unclear. Here, we discovered that the ROS–ER–calcium–mitochondria signal pathway mediated parthanatos and the significance of propofol in parthanatos. Next, we found that ROS overproduction would cause endoplasmic reticulum (ER) calcium release, leading to mitochondria depolarization with the loss of mitochondrial membrane potential. Mitochondria depolarization caused mitochondria to release more ROS, which, in turn, contributed to parthanatos. Also, we found that propofol inhibited parthanatos through impeding ROS overproduction, calcium release from ER, and mitochondrial depolarization in parthanatos. Importantly, our results indicated that propofol protected cerebral ischemia–reperfusion via parthanatos suppression, amelioration of mitochondria, and ER swelling. Our findings provide new insights into the mechanisms of how ER and mitochondria contribute to parthanatos. Furthermore, our studies elucidated that propofol has a vital role in parthanatos prevention in vivo and in vitro, and propofol can be a promising therapeutic approach for nerve injury patients.
Collapse
|
11
|
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
Collapse
Affiliation(s)
- Kareem Clark
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,2 Neuroscience Curriculum, 72054 Virginia Commonwealth University , Richmond, VA, USA
| | - Brooke A Sword
- 3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| | - Jeffrey L Dupree
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| |
Collapse
|
12
|
Schnuelle P, Benck U, Yard BA. Dopamine in transplantation: Written off or comeback with novel indication? Clin Transplant 2018; 32:e13292. [DOI: 10.1111/ctr.13292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Schnuelle
- Center for Renal Diseases; Weinheim Germany
- V Department of Medicine; University Medical Center Mannheim; Mannheim Germany
| | - Urs Benck
- V Department of Medicine; University Medical Center Mannheim; Mannheim Germany
| | - Benito A. Yard
- V Department of Medicine; University Medical Center Mannheim; Mannheim Germany
| |
Collapse
|