1
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
2
|
Assessment of genotoxic chemicals using chemogenomic profiling based on gene-knockout library in Saccharomyces cerevisiae. Toxicol In Vitro 2021; 79:105278. [PMID: 34843885 DOI: 10.1016/j.tiv.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Understanding the adverse effects of genotoxic chemicals and identifying them effectively from non-genotoxic chemicals are of great worldwide concerns. Here, Saccharomyces cerevisiae (yeast) genome-wide single-gene knockout screening approach was conducted to assess two genotoxic chemicals (4-nitroquinoline-1-oxide (4-NQO) and formaldehyde (FA)) and environmental pollutant dichloroacetic acid (DCA, genotoxicity is controversial). DNA repair was significant enriched in the gene ontology (GO) biology process (BP) terms and KEGG pathways when exposed to low concentrations of 4-NQO and FA. Higher concentrations of 4-NQO and FA influenced some RNA metabolic and biosynthesis pathways. Moreover, replication and repair associated pathways were top ranked KEGG pathways with high fold-change for low concentrations of 4-NQO and FA. The similar gene profiles perturbed by DCA with three test concentrations identified, the common GO BP terms associated with aromatic amino acid family biosynthetic process and ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway. DCA has no obvious genotoxicity as there was no enriched DNA damage and repair pathways and fold-change of replication and repair KEGG pathways were very low. Five genes (RAD18, RAD59, MUS81, MMS4, and BEM4) could serve as candidate genes for genotoxic chemicals. Overall, the yeast functional genomic profiling showed great performance for assessing the signatures and potential molecular mechanisms of genotoxic chemicals.
Collapse
|
3
|
Genome Profiling for Aflatoxin B 1 Resistance in Saccharomyces cerevisiae Reveals a Role for the CSM2/SHU Complex in Tolerance of Aflatoxin B 1-Associated DNA Damage. G3-GENES GENOMES GENETICS 2020; 10:3929-3947. [PMID: 32994210 PMCID: PMC7642924 DOI: 10.1534/g3.120.401723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to the mycotoxin aflatoxin B1 (AFB1) strongly correlates with hepatocellular carcinoma (HCC). P450 enzymes convert AFB1 into a highly reactive epoxide that forms unstable 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N 7-Gua) DNA adducts, which convert to stable mutagenic AFB1 formamidopyrimidine (FAPY) DNA adducts. In CYP1A2-expressing budding yeast, AFB1 is a weak mutagen but a potent recombinagen. However, few genes have been identified that confer AFB1 resistance. Here, we profiled the yeast genome for AFB1 resistance. We introduced the human CYP1A2 into ∼90% of the diploid deletion library, and pooled samples from CYP1A2-expressing libraries and the original library were exposed to 50 μM AFB1 for 20 hs. By using next generation sequencing (NGS) to count molecular barcodes, we initially identified 86 genes from the CYP1A2-expressing libraries, of which 79 were confirmed to confer AFB1 resistance. While functionally diverse genes, including those that function in proteolysis, actin reorganization, and tRNA modification, were identified, those that function in postreplication DNA repair and encode proteins that bind to DNA damage were over-represented, compared to the yeast genome, at large. DNA metabolism genes also included those functioning in checkpoint recovery and replication fork maintenance, emphasizing the potency of the mycotoxin to trigger replication stress. Among genes involved in postreplication repair, we observed that CSM2, a member of the CSM2 (SHU) complex, functioned in AFB1-associated sister chromatid recombination while suppressing AFB1-associated mutations. These studies thus broaden the number of AFB1 resistance genes and have elucidated a mechanism of error-free bypass of AFB1-associated DNA adducts.
Collapse
|
4
|
Nakamura J. Potential Doxorubicin-Mediated Dual-Targeting Chemotherapy in FANC/BRCA-Deficient Tumors via Modulation of Cellular Formaldehyde Concentration. Chem Res Toxicol 2020; 33:2659-2667. [PMID: 32876438 DOI: 10.1021/acs.chemrestox.0c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doxorubicin (DOX) is a widely used classical broad-spectrum anticancer drug. The major mechanism of DOX-mediated anticancer activity at clinically relevant concentrations is believed to be via DNA double-strand breaks due to topoisomerase IIα. However, other mechanisms by which DOX causes cytotoxicity have been proposed, including formaldehyde-dependent virtual interstrand cross-linking (ICL) formation. In this study, a method was established whereby cytotoxicity caused by virtual ICL derived from DOX is turned on and off using a cell culture system. Using this strategy, DOX-mediated cytotoxicity in Fanconi anemia group gene (FANC)/breast cancer susceptibility gene (BRCA)-deficient cells increased up to 70-fold compared to that in cells proficient in DNA repair pathways by increasing intracellular formaldehyde (FA) concentration. This approach also demonstrated that cytotoxicity introduced by DOX-mediated FA-dependent virtual ICL is completely independent of the toxicity induced by topoisomerase II inhibition at the cellular level. The potential of dual-targeting by DOX treatment was verified using an acid-specific FA donor. Overall, anticancer therapy targeting tumors deficient in the FANC/BRCA pathway may be possible by minimizing DOX-induced toxicity in normal cells.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
5
|
Bezalel-Buch R, Cheun YK, Roy U, Schärer OD, Burgers PM. Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase ζ complex. Nucleic Acids Res 2020; 48:8461-8473. [PMID: 32633759 PMCID: PMC7470978 DOI: 10.1093/nar/gkaa580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase ζ (Pol ζ) and Rev1 are essential for the repair of DNA interstrand crosslink (ICL) damage. We have used yeast DNA polymerases η, ζ and Rev1 to study translesion synthesis (TLS) past a nitrogen mustard-based interstrand crosslink (ICL) with an 8-atom linker between the crosslinked bases. The Rev1-Pol ζ complex was most efficient in complete bypass synthesis, by 2-3 fold, compared to Pol ζ alone or Pol η. Rev1 protein, but not its catalytic activity, was required for efficient TLS. A dCMP residue was faithfully inserted across the ICL-G by Pol η, Pol ζ, and Rev1-Pol ζ. Rev1-Pol ζ, and particularly Pol ζ alone showed a tendency to stall before the ICL, whereas Pol η stalled just after insertion across the ICL. The stalling of Pol η directly past the ICL is attributed to its autoinhibitory activity, caused by elongation of the short ICL-unhooked oligonucleotide (a six-mer in our study) by Pol η providing a barrier to further elongation of the correct primer. No stalling by Rev1-Pol ζ directly past the ICL was observed, suggesting that the proposed function of Pol ζ as an extender DNA polymerase is also required for ICL repair.
Collapse
Affiliation(s)
- Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Young K Cheun
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Book, NY 11794, USA.,Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
De La Rosa VY, Asfaha J, Fasullo M, Loguinov A, Li P, Moore LE, Rothman N, Nakamura J, Swenberg JA, Scelo G, Zhang L, Smith MT, Vulpe CD. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes. Toxicol Sci 2017; 160:111-120. [PMID: 28973557 PMCID: PMC5837773 DOI: 10.1093/toxsci/kfx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study.
Collapse
Affiliation(s)
- Vanessa Y. De La Rosa
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720
| | - Jonathan Asfaha
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720
| | - Michael Fasullo
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12205
| | - Alex Loguinov
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720
| | - Peng Li
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Lee E. Moore
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Nakamura
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | | | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720
| | - Chris D. Vulpe
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720
| |
Collapse
|