1
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. Bioactivation, Mutagenicity, DNA Damage, and Oxidative Stress Induced by 3,4-Dimethylaniline. Biomolecules 2024; 14:1562. [PMID: 39766269 PMCID: PMC11674834 DOI: 10.3390/biom14121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
3,4-Dimethylaniline (3,4-DMA) is present in cigarette smoke and widely used as an intermediate in dyes, drugs, and pesticides. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human CYP1A2 and N-acetyltransferase 1 (NAT1) alleles: NAT1*4 (reference allele) or NAT1*14B (the most common variant allele) were utilized to assess 3,4-DMA N-acetylation and hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks and reactive oxygen species (ROS). CHO cells expressing NAT1*4 exhibited significantly (p < 0.001) higher 3,4-DMA N-acetylation rates than CHO cells expressing NAT1*14B both in vitro and in situ. In CHO cells expressing CYP1A2 and NAT1, 3,4-DMA caused concentration-dependent increases in reactive oxygen species (ROS), double-stranded DNA damage, and HPRT mutations. CHO cells expressing NAT1*4 and NAT1*14B exhibited concentration-dependent increases in ROS following treatment with 3,4-DMA (linear trend p < 0.001 and p < 0.0001 for NAT1*4 and NAT1*14B, respectively) that were lower than in CHO cells expressing CYP1A2 alone. DNA damage and oxidative stress induced by 3,4-DMA did not differ significantly (p >0.05) between CHO cells expressing NAT1*4 and NAT1*14B. CHO cells expressing NAT1*14B showed higher HPRT mutants (p < 0.05) than CHO cells expressing NAT1*4. These findings confirm 3,4-DMA genotoxicity consistent with potential carcinogenicity.
Collapse
Affiliation(s)
| | | | | | - David W. Hein
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.R.H.); (R.A.S.-G.); (M.A.D.)
| |
Collapse
|
2
|
Liu Y, Li X, Pu Q, Fu R, Wang Z, Li Y, Li X. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131541. [PMID: 37146326 DOI: 10.1016/j.jhazmat.2023.131541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Aromatic amines, one of the most widely used low-cost antioxidants in rubbers, have been regarded as pollutants with human health concerns. To overcome this problem, this study developed a systematic molecular design, screening, and performance evaluation method to design functionally improved, environmentally friendly and synthesizable aromatic amine alternatives for the first time. Nine of 33 designed aromatic amine derivatives have improved antioxidant property (lower bond dissociation energy of N-H), and their environmental and bladder carcinogenicity impacts were evaluated through toxicokinetic model and molecular dynamics simulation. The environmental fate of the designed AAs-11-8, AAs-11-16, and AAs-12-2 after antioxidation (i.e., peroxyl radicals (ROO·), hydroxyl radicals (HO·), superoxide anion radicals (O2·-) and ozonation reaction) was also analyzed. Results showed that the by-products of AAs-11-8 and AAs-12-2 have less toxicity after antioxidation. In addition, human bladder carcinogenicity of the screened alternatives was also evaluated through adverse outcome pathway. The carcinogenic mechanisms were analyzed and verified through amino acid residue distribution characteristics, 3D-QSAR and 2D-QSAR models. AAs-12-2, with high antioxidation property, low environmental impacts and carcinogenicity, was screened as the optimum alternative for 3,5-Dimethylbenzenamine. This study provided theoretical support for designing environmentally friendly and functionally improved aromatic amine alternatives from toxicity evaluation and mechanism analysis.
Collapse
Affiliation(s)
- Yajing Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Rui Fu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhonghe Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
3
|
Nychyk O, Barton W, Rudolf AM, Boscaini S, Walsh A, Bastiaanssen TFS, Giblin L, Cormican P, Chen L, Piotrowicz Y, Derous D, Fanning Á, Yin X, Grant J, Melgar S, Brennan L, Mitchell SE, Cryan JF, Wang J, Cotter PD, Speakman JR, Nilaweera KN. Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Rep 2021; 35:109093. [PMID: 33979605 DOI: 10.1016/j.celrep.2021.109093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
We investigated how protein quantity (10%-30%) and quality (casein and whey) interact with dietary fat (20%-55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of dietary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the associated protein, primarily via effects on the microbiota.
Collapse
Affiliation(s)
- Oleksandr Nychyk
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Wiley Barton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Agata M Rudolf
- Key State Laboratory for Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Serena Boscaini
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Aaron Walsh
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Linda Giblin
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Paul Cormican
- Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Liang Chen
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yolanda Piotrowicz
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Áine Fanning
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Xiaofei Yin
- School of Agriculture and Food Science, Institute of Food and Health and Conway Institute, University College Dublin, Dublin, Ireland
| | - Jim Grant
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Lorraine Brennan
- VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland; School of Agriculture and Food Science, Institute of Food and Health and Conway Institute, University College Dublin, Dublin, Ireland
| | - Sharon E Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul D Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - John R Speakman
- Key State Laboratory for Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; CAS Center of Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, China; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Kanishka N Nilaweera
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland.
| |
Collapse
|
5
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|