1
|
Moghe M, Kim SS, Guan M, Rait A, Pirollo KF, Harford JB, Chang EH. scL-2PAM: A Novel Countermeasure That Ameliorates Neuroinflammation and Neuronal Losses in Mice Exposed to an Anticholinesterase Organophosphate. Int J Mol Sci 2024; 25:7539. [PMID: 39062781 PMCID: PMC11276659 DOI: 10.3390/ijms25147539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Due to their inhibition of acetylcholinesterase, organophosphates are among the most toxic of chemicals. Pralidoxime (a.k.a 2-PAM) is the only acetylcholinesterase reactivator approved in the U.S., but 2-PAM only poorly traverses the blood-brain barrier. Previously, we have demonstrated that scL-2PAM, a nanoformulation designed to enter the brain via receptor-mediated transcytosis, is superior to unencapsulated 2-PAM for reactivating brain acetylcholinesterase, ameliorating cholinergic crisis, and improving survival rates for paraoxon-exposed mice. Here, we employ histology and transcriptome analyses to assess the ability of scL-2PAM to prevent neurological sequelae including microglial activation, expression of inflammatory cytokines, and ultimately loss of neurons in mice surviving paraoxon exposures. Levels of the mRNA encoding chemokine ligand 2 (CCL2) were significantly upregulated after paraoxon exposures, with CCL2 mRNA levels in the brain correlating well with the intensity and duration of cholinergic symptoms. Our nanoformulation of 2-PAM was found to be superior to unencapsulated 2-PAM in reducing the levels of the CCL2 transcript. Moreover, brain histology revealed that scL-2PAM was more effective than unencapsulated 2-PAM in preventing microglial activation and the subsequent loss of neurons. Thus, scL-2PAM appears to be a new and improved countermeasure for reducing neuroinflammation and mitigating brain damage in survivors of organophosphate exposures.
Collapse
Affiliation(s)
- Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
| | - Miaoyin Guan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Antonina Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Kathleen F. Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | | | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Tressler CM, Wadsworth B, Carriero S, Dillman N, Crawford R, Hahm TH, Glunde K, Cadieux CL. Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. Int J Mol Sci 2024; 25:5624. [PMID: 38891812 PMCID: PMC11172367 DOI: 10.3390/ijms25115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Organophosphoate (OP) chemicals are known to inhibit the enzyme acetylcholinesterase (AChE). Studying OP poisoning is difficult because common small animal research models have serum carboxylesterase, which contributes to animals' resistance to OP poisoning. Historically, guinea pigs have been used for this research; however, a novel genetically modified mouse strain (KIKO) was developed with nonfunctional serum carboxylase (Es1 KO) and an altered acetylcholinesterase (AChE) gene, which expresses the amino acid sequence of the human form of the same protein (AChE KI). KIKO mice were injected with 1xLD50 of an OP nerve agent or vehicle control with or without atropine. After one to three minutes, animals were injected with 35 mg/kg of the currently fielded Reactivator countermeasure for OP poisoning. Postmortem brains were imaged on a Bruker RapifleX ToF/ToF instrument. Data confirmed the presence of increased acetylcholine in OP-exposed animals, regardless of treatment or atropine status. More interestingly, we detected a small amount of Reactivator within the brain of both exposed and unexposed animals; it is currently debated if reactivators can cross the blood-brain barrier. Further, we were able to simultaneously image acetylcholine, the primary affected neurotransmitter, as well as determine the location of both Reactivator and acetylcholine in the brain. This study, which utilized sensitive MALDI-MSI methods, characterized KIKO mice as a functional model for OP countermeasure development.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Wadsworth
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Samantha Carriero
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Natalie Dillman
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Crawford
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-Hun Hahm
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristine Glunde
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C. Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| |
Collapse
|
3
|
Shulaeva MM, Zueva IV, Nikolaev AE, Saifina LF, Sharafutdinova DR, Babaev VM, Semenov VE, Petrov KA. Conjugates of nucleobases with triazole-hydroxamic acids for the reactivation of acetylcholinesterase and treatment of delayed neurodegeneration induced by organophosphate poisoning. Bioorg Chem 2023; 141:106858. [PMID: 37774432 DOI: 10.1016/j.bioorg.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX. At a dose of 200 mg/kg (i.v.), the lead compound 3e reactivated 22.6 ± 7.3% of brain AChE in rats poisoned with POX. In a rat model of POX-induced delayed neurodegeneration, compound 3e reduced the neuronal injury labeled with FJB upon double administration 1 and 3 h after poisoning. Compound 3e was also shown to prevent memory impairment of POX-poisoned rats as tested in a Morris water maze.
Collapse
Affiliation(s)
- Marina M Shulaeva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Anton E Nikolaev
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Dilyara R Sharafutdinova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation.
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation; Kazan Federal University, Kremlyovskaya str., 18, Kazan 420008, Russian Federation
| |
Collapse
|
4
|
Thinschmidt JS, Harden SW, King MA, Talton JD, Frazier CJ. A rapid in vitro assay for evaluating the effects of acetylcholinesterase inhibitors and reactivators in the rat basolateral amygdala. Front Cell Neurosci 2022; 16:1066312. [DOI: 10.3389/fncel.2022.1066312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
We established a novel brain slice assay to test the ability of acetylcholinesterase (AChE) reactivators to prevent ACh-induced M1 muscarinic acetylcholine receptor (mAChR) dependent hyperexcitability observed after exposure to the organophosphate (OP)-based AChE inhibitor and sarin surrogate 4-nitrophenyl isopropyl methylphosphonate (NIMP). Whole-cell patch clamp recordings were used to evaluate the response of pyramidal neurons in the rat basolateral amygdala (BLA) to brief (1 min) bath application of ACh (100 μM), either in control conditions, or after exposure to NIMP ± an AChE reactivator. Bath application of ACh produced atropine- and pirenzepine-sensitive inward currents in voltage clamped BLA pyramidal neurons, and increased the frequency of spontaneous EPSCs, suggesting robust activation of M1 mAChRs. Responses to ACh were increased ~3–5 fold in slices that had been preincubated in NIMP, and these effects were reversed in a concentration dependent manner by exposure to a commercially available AChE reactivator. The current work outlines a simple assay that can be used to evaluate the efficacy of both known and novel AChE reactivators in an area of the limbic system that likely contributes to seizures after acute exposure to OP-based AChE inhibitors.
Collapse
|
5
|
Kuznetsova DA, Gaynanova GA, Vasilieva EA, Pavlov RV, Zueva IV, Babaev VM, Kuznetsov DM, Voloshina AD, Petrov KA, Zakharova LY, Sinyashin OG. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics 2022; 14:pharmaceutics14091950. [PMID: 36145698 PMCID: PMC9506492 DOI: 10.3390/pharmaceutics14091950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus.
Collapse
|
6
|
Backer BS, Meek EC, Ross MK, Chambers JE. Pharmacokinetics of three novel pyridinium aldoxime acetylcholinesterase reactivators in female rats. Toxicol Appl Pharmacol 2022; 446:116046. [PMID: 35550885 PMCID: PMC9374181 DOI: 10.1016/j.taap.2022.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
A platform of novel lipophilic substituted phenoxyalkyl pyridinium oximes was invented to reactivate organophosphate-inhibited acetylcholinesterase. This platform has provided superior efficacy in rats to the current standard of care, 2-PAM, for survival of lethal doses of nerve agent surrogates as well as evidence of brain penetration and neuroprotection. The pharmacokinetics of three of these novel oximes in female rats was studied for comparison to previous data in male rats. Compared to the published half-life of 2-PAM (less than 2 h), the lead novel oxime, Oxime 20, displayed a plasma half-life of about 5 h in both sexes of rats following intramuscular administration. Very few sex differences in pharmacokinetic parameters were apparent. Oxime 20 displayed an increase in brain concentration to plasma concentration over the initial 2 h following intramuscular administration in male rats, with a plateau at 1 h; there were no differences in brain concentrations between the sexes at 2 h. Hepatic metabolism of Oxime 20 was higher in rat microsomes than in human microsomes. The relatively long plasma half-life is likely an important factor in both the enhanced survival and the neuroprotection previously observed for Oxime 20. The metabolism data suggest that the clearance of Oxime 20 could be slower in humans than was observed in rats, which might allow less frequent administration than 2-PAM for therapy of organophosphate acute toxicity. Therefore, the pharmacokinetic data combined with our earlier efficacy data suggest that Oxime 20 has potential as a superior therapeutic for nerve agent poisoning.
Collapse
Affiliation(s)
- Brian S Backer
- College of Veterinary Medicine, Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Edward C Meek
- College of Veterinary Medicine, Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Matthew K Ross
- College of Veterinary Medicine, Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Janice E Chambers
- College of Veterinary Medicine, Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, United States of America.
| |
Collapse
|
7
|
François S, Mondot S, Gerard Q, Bel R, Knoertzer J, Berriche A, Cavallero S, Baati R, Orset C, Dal Bo G, Thibault K. Long-Term Anxiety-Like Behavior and Microbiota Changes Induced in Mice by Sublethal Doses of Acute Sarin Surrogate Exposure. Biomedicines 2022; 10:biomedicines10051167. [PMID: 35625901 PMCID: PMC9138233 DOI: 10.3390/biomedicines10051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Anxiety disorder is one of the most reported complications following organophosphorus (OP) nerve agent (NA) exposure. The goal of this study was to characterize the long-term behavioral impact of a single low dose exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. We chose two different sublethal doses of NIMP, each corresponding to a fraction of the median lethal dose (one mild and one convulsive), and evaluated behavioral changes over a 6-month period following exposure. Mice exposed to both doses showed anxious behavior which persisted for six-months post-exposure. A longitudinal magnetic resonance imaging examination did not reveal any anatomical changes in the amygdala throughout the 6-month period. While no cholinesterase activity change or neuroinflammation could be observed at the latest timepoint in the amygdala of NIMP-exposed mice, important modifications in white blood cell counts were noted, reflecting a perturbation of the systemic immune system. Furthermore, intestinal inflammation and microbiota changes were observed at 6-months in NIMP-exposed animals regardless of the dose received. This is the first study to identify long-term behavioral impairment, systemic homeostasis disorganization and gut microbiota alterations following OP sublethal exposure. Our findings highlight the importance of long-term care for victims of NA exposure, even in asymptomatic cases.
Collapse
Affiliation(s)
- Sabine François
- Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (S.F.); (S.C.)
| | - Stanislas Mondot
- Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France;
| | - Quentin Gerard
- Department of Toxicology and Chemical Risks, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (Q.G.); (R.B.); (J.K.); (A.B.)
- Institut Blood and Brain@caen-normandie Cyceron, Caen-Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France;
| | - Rosalie Bel
- Department of Toxicology and Chemical Risks, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (Q.G.); (R.B.); (J.K.); (A.B.)
| | - Julie Knoertzer
- Department of Toxicology and Chemical Risks, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (Q.G.); (R.B.); (J.K.); (A.B.)
| | - Asma Berriche
- Department of Toxicology and Chemical Risks, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (Q.G.); (R.B.); (J.K.); (A.B.)
- CEA, 92260 Fontenay aux Roses, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (S.F.); (S.C.)
| | - Rachid Baati
- ICPEES UMR CNRS 7515, Institut de Chimie des Procédés, pour l’Energie, l’Environnement, et la Santé, 67000 Strasbourg, France;
| | - Cyrille Orset
- Institut Blood and Brain@caen-normandie Cyceron, Caen-Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France;
| | - Gregory Dal Bo
- Department of Toxicology and Chemical Risks, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (Q.G.); (R.B.); (J.K.); (A.B.)
- Correspondence: (G.D.B.); (K.T.)
| | - Karine Thibault
- Department of Toxicology and Chemical Risks, Armed Forces Biomedical Research Institute, 91220 Bretigny sur Orge, France; (Q.G.); (R.B.); (J.K.); (A.B.)
- Correspondence: (G.D.B.); (K.T.)
| |
Collapse
|
8
|
Bennion BJ, Malfatti MA, Be NA, Enright HA, Hok S, Cadieux CL, Carpenter TS, Lao V, Kuhn EA, McNerney MW, Lightstone FC, Nguyen TH, Valdez CA. Development of a CNS-permeable reactivator for nerve agent exposure: an iterative, multi-disciplinary approach. Sci Rep 2021; 11:15567. [PMID: 34330964 PMCID: PMC8324913 DOI: 10.1038/s41598-021-94963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.
Collapse
Affiliation(s)
- Brian J Bennion
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Michael A Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Nicholas A Be
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Heather A Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Saphon Hok
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - C Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, 21010, USA
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Edward A Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - M Windy McNerney
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Affiliation: Mental Illness Research, Education and Clinical Center, Veterans Affairs, Palo Alto, CA, 94304, USA
- Affiliation: Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tuan H Nguyen
- Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Carlos A Valdez
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
9
|
Angrand L, Takillah S, Malissin I, Berriche A, Cervera C, Bel R, Gerard Q, Knoertzer J, Baati R, Kononchik JP, Megarbane B, Thibault K, Dal Bo G. Persistent brainwave disruption and cognitive impairment induced by acute sarin surrogate sub-lethal dose exposure. Toxicology 2021; 456:152787. [PMID: 33887375 DOI: 10.1016/j.tox.2021.152787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.
Collapse
Affiliation(s)
- Loïc Angrand
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; EnvA, IMRB, Maisons-Alfort, France; Université Paris-Est Créteil, INSERM, Team Relaix, Créteil, France
| | - Samir Takillah
- Departement of Neuroscience, Unit of Fatigue and Vigilance, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Asma Berriche
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; CEA, Fontenay aux roses, France
| | - Chloe Cervera
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rosalie Bel
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Quentin Gerard
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Julie Knoertzer
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rachid Baati
- ICPEES UMR CNRS 7515, Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé, Strasbourg, France
| | - Joseph P Kononchik
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Bruno Megarbane
- VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Karine Thibault
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| | - Gregory Dal Bo
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| |
Collapse
|
10
|
Dail ME, Brino MLM, Chambers JE. Effects of novel brain-penetrating oxime acetylcholinesterase reactivators on sarin surrogate-induced changes in rat brain gene expression. J Biochem Mol Toxicol 2021; 35:1-10. [PMID: 33682265 DOI: 10.1002/jbt.22755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
Past assassinations and terrorist attacks demonstrate the need for a more effective antidote against nerve agents and other organophosphates (OP) that cause brain damage through inhibition of acetylcholinesterase (AChE). Our lab has invented a platform of phenoxyalkyl pyridinium oximes (US patent 9,277,937) that demonstrate the ability to cross the blood-brain barrier in in vivo rat tests with a sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP) and provide evidence of brain penetration by reducing cessation time of seizure-like behaviors, accumulation of glial fibrillary acidic protein (GFAP), and hippocampal neuropathology, as opposed to the currently approved oxime, 2-pyridine aldoxime methyl chloride (2-PAM). Using two of the novel oximes (Oximes 1 and 20), this project examined whether gene expression changes might help explain this protection. Expression changes in the piriform cortex were examined using polymerase chain reaction arrays for inflammatory cytokines and receptors. The hippocampus was examined via quantitative polymerase chain reaction for the expression of immediate-early genes involved in brain repair (Bdnf), increasing neurotoxicity (Fos), and apoptosis control (Jdp2, Bcl2l1, Bcl2l11). In the piriform cortex, NIMP significantly stimulated expression for the macrophage inflammatory proteins CCL4, IL-1A, and IL-1B. Oxime 20 by itself elicited the most changes. When it was given therapeutically post-NIMP, the largest change occurred: a 310-fold repression of the inflammatory cytokine, CCL12. In the hippocampus, NIMP increased the expression of the neurotoxicity marker Fos and decreased the expression of neuroprotective Bdnf and antiapoptotic Bcl2l1. Compared with 2-PAM, Oxime 20 stimulated Bcl2l1 expression more and returned expression closer to the vehicle control values.
Collapse
Affiliation(s)
- Mary E Dail
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| | - Meghan L M Brino
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| | - Janice E Chambers
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| |
Collapse
|
11
|
Nichols RH, Chambers JE. Reactivation of organophosphate-inhibited serum butyrylcholinesterase by novel substituted phenoxyalkyl pyridinium oximes and traditional oximes. Toxicology 2021; 452:152719. [PMID: 33592259 DOI: 10.1016/j.tox.2021.152719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Organophosphorus compounds (OPs) include nerve agents and insecticides that potently inhibit acetylcholinesterase (AChE), an essential enzyme found throughout the nervous system. High exposure levels to OPs lead to seizures, cardiac arrest, and death if left untreated. Oximes are a critical piece to the therapeutic regimen which remove the OP from the inhibited AChE and restore normal cholinergic function. The current oximes 2-PAM, MMB-4, TMB-4, HI-6, and obidoxime (OBD) have two drawbacks: lack of broad spectrum protection against multiple OP structures and poor brain penetration to protect against OP central neurotoxicity. An alternative strategy to enhance therapy is reactivation of serum butyrylcholinesterase (BChE). BChE is stoichiometrically inhibited by OPs with no apparent toxic result. Inhibition of BChE in the serum followed by reactivation could create a pseudo-catalytic scavenger allowing numerous regenerations of BChE to detoxify circulating OP molecules before they can reach target AChE. BChE in serum from rats, guinea pigs or humans was screened for the reactivation potential of our novel substituted phenoxyalkyl pyridinium oximes, plus 2-PAM, MMB-4, TMB-4, HI-6, and OBD (100μM) in vitro after inhibition by highly relevant surrogates of sarin, VX, and cyclosarin, and also DFP, and the insecticidal active metabolites paraoxon, phorate-oxon, and phorate-oxon sulfoxide. Novel oxime 15 demonstrated significant broad spectrum reactivation of OP-inhibited rat serum BChE while novel oxime 20 demonstrated significant broad spectrum reactivation of OP-inhibited human serum BChE. All tested oximes were poor reactivators of OP-inhibited guinea pig serum BChE. The bis-pyridinium oximes were poor BChE reactivators overall. BChE reactivation may be an additional mechanism to attenuate OP toxicity and contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Royce H Nichols
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, United States
| | - Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, United States.
| |
Collapse
|
12
|
Alozi M, Rawas-Qalaji M. Treating organophosphates poisoning: management challenges and potential solutions. Crit Rev Toxicol 2020; 50:764-779. [DOI: 10.1080/10408444.2020.1837069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria Alozi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
13
|
Garcia JM, Meek EC, Chambers JE. Novel pyridinium oximes enhance 24-h survivability against a lethal dose of nerve agent surrogate in adult female rats. Toxicology 2020; 446:152626. [PMID: 33159982 DOI: 10.1016/j.tox.2020.152626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Our laboratory has developed novel substituted phenoxyalkyl pyridinium oximes (US Patent 9,227,937) designed to more efficiently penetrate the central nervous system to enhance survivability and attenuate seizure-like signs and neuropathology. Previous studies with male Sprague-Dawley rats indicated that survivability was enhanced against the nerve agent (sarin) surrogate, 4-nitrophenyl isopropyl methylphosphonate (NIMP). In this study, female adult Sprague-Dawley rats, tested specifically in diestrus, were challenged subcutaneously with lethal concentrations of NIMP (0.6 mg/kg). After development of seizure-like behavior and other signs of cholinergic toxicity, human equivalent dosages of atropine (0.65 mg/kg) and one of four oximes (2-PAM, or novel oxime 15, 20, or 55; 0.146 mmol/kg) or Multisol vehicle was administered alone or in binary oxime combinations intramuscularly. Animals were closely monitored for signs of cholinergic toxicity and 24 h survivability. Percentages of animals surviving the 24 h NIMP challenge dose were 35 % for 2-PAM and 55 %, 70 %, and 25 % for novel oximes 15, 20, and 55, respectively. Improvements in survival were also observed over 2-PAM alone with binary combinations of 2-PAM and either oxime 15 or oxime 20. Additionally, administration of novel oximes decreased the duration of seizure-like behavior as compared to 2-PAM suggesting that these oximes better penetrate the blood-brain barrier to mitigate central nervous system hypercholinergic activity. Efficacies were similar between females and previously reported males. These data indicate that the novel pyridinium oximes enhance survivability against lethal OP toxicity as compared to 2-PAM in adult female rats.
Collapse
Affiliation(s)
- Jason M Garcia
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS, 39762, USA.
| | - Edward C Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS, 39762, USA.
| | - Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS, 39762, USA.
| |
Collapse
|
14
|
Chambers JE, Dail MB, Meek EC. Oxime-mediated reactivation of organophosphate-inhibited acetylcholinesterase with emphasis on centrally-active oximes. Neuropharmacology 2020; 175:108201. [PMID: 32544483 DOI: 10.1016/j.neuropharm.2020.108201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023]
Abstract
This review provides an overview of the global research leading to the large number of compounds developed as reactivators of acetylcholinesterase inhibited by a variety of organophosphate compounds, most of which are nerve agents but also some insecticides. A number of these organophosphates are highly toxic and effective therapy by reactivators contributes to saving lives. Two major challenges for more effective therapy with reactivators are identification of a broad spectrum reactivator efficacious against a variety of organophosphate structures, and a reactivator that can cross the blood-brain barrier to protect the brain. The most effective of the reactivators developed are the nucleophilic pyridinium oximes, which bear a permanent positive charge from the quaternary nitrogen in the pyridinium ring. The permanent positive charge retards the oximes from crossing the blood-brain barrier and therefore restoration of normal cholinergic function in the brain is unlikely. A number of laboratories have developed nucleophiles, mostly oximes, that are theorized to cross the blood-brain barrier by several strategies. At the present time, no reactivator is optimally broad spectrum across the wide group of organophosphate chemistries. Some oximes, including the substituted phenoxyalkyl pyridinium oximes invented by our laboratories, have the potential to provide neuroprotection in the brain and show evidence of efficacy against both nerve agent and insecticidal chemistries, so these novel oximes have promise for future development. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA.
| | - Mary B Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA
| |
Collapse
|
15
|
Chambers JE, Meek EC. Central neuroprotection demonstrated by novel oxime countermeasures to nerve agent surrogates. Ann N Y Acad Sci 2020; 1479:5-12. [PMID: 32319115 DOI: 10.1111/nyas.14352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
Oximes remain a long-standing element of the therapy for nerve agents, organophosphates (OPs) that poison by inhibiting the enzyme acetylcholinesterase (AChE), resulting in hypercholinergic activity both centrally and peripherally. Oximes, such as the pyridinium oxime pralidoxime (2-PAM) in the United States, can reactivate the inhibited AChE and restore cholinergic function. However, there are several drawbacks to the current oximes; one of them, the inability of these oximes to effectively enter the brain, is the subject of study by several laboratories, including ours. Our laboratory invented a platform of substituted phenoxyalkyl pyridinium oximes that were tested against highly relevant surrogates of the nerve agents, sarin and VX. Using high sublethal dosages of the OPs, the novel oximes were observed to attenuate seizure-like behavior in rats and to reduce the levels of glial fibrillary acidic protein (an indicator of glial scarring) to control levels, in contrast to levels observed with 2-PAM or no oxime therapy. Using lethal levels of surrogates, some novel oximes protected against lethality compared with 2-PAM, shortened the time to cessation of seizure-like behavior (from 8+ to 6 h), and protected the brain neurons. Therefore, some of these novel oximes are showing exceptional promise alone or in combination with 2-PAM as therapeutics against nerve agent toxicity.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
16
|
Zorbaz T, Mišetić P, Probst N, Žunec S, Zandona A, Mendaš G, Micek V, Maček Hrvat N, Katalinić M, Braïki A, Jean L, Renard PY, Gabelica Marković V, Kovarik Z. Pharmacokinetic Evaluation of Brain Penetrating Morpholine-3-hydroxy-2-pyridine Oxime as an Antidote for Nerve Agent Poisoning. ACS Chem Neurosci 2020; 11:1072-1084. [PMID: 32105443 DOI: 10.1021/acschemneuro.0c00032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nerve agents, the deadliest chemical warfare agents, are potent inhibitors of acetylcholinesterase (AChE) and cause rapid cholinergic crisis with serious symptoms of poisoning. Oxime reactivators of AChE are used in medical practice in the treatment of nerve agent poisoning, but the search for novel improved reactivators with central activity is an ongoing pursuit. For numerous oximes synthesized, in vitro reactivation is a standard approach in biological evaluation with little attention given to the pharmacokinetic properties of the compounds. This study reports a comprehensive physicochemical, pharmacokinetic, and safety profiling of five lipophilic 3-hydroxy-2-pyridine aldoximes, which were recently shown to be potent AChE reactivators with a potential to be centrally active. The oxime JR595 was singled out as highly metabolically stable in human liver microsomes, noncytotoxic oxime for SH-SY5Y neuroblastoma and 1321N1 astrocytoma cell lines, and its pharmacokinetic profile was determined after intramuscular administration in mice. JR595 was rapidly absorbed into blood after 15 min with simultaneous distribution to the brain at up to about 40% of its blood concentration; however, it was eliminated from both the brain and blood within an hour. In addition, the MDCKII-MDR1 cell line assay showed that oxime JR595 was not a P-glycoprotein efflux pump substrate. Finally, the preliminary antidotal study against multiple LD50 doses of VX and sarin in mice showed the potential of JR595 to provide desirable therapeutic outcomes with future improvements in its circulation time.
Collapse
Affiliation(s)
- Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Petra Mišetić
- Fidelta Ltd, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Nicolas Probst
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Anissa Braïki
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Ludovic Jean
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Vesna Gabelica Marković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| |
Collapse
|
17
|
Semenov VE, Zueva IV, Lushchekina SV, Lenina OA, Gubaidullina LM, Saifina LF, Shulaeva MM, Kayumova RM, Saifina AF, Gubaidullin AT, Kondrashova SA, Latypov SK, Masson P, Petrov KA. 6-Methyluracil derivatives as peripheral site ligand-hydroxamic acid conjugates: Reactivation for paraoxon-inhibited acetylcholinesterase. Eur J Med Chem 2019; 185:111787. [PMID: 31675511 DOI: 10.1016/j.ejmech.2019.111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
New uncharged conjugates of 6-methyluracil derivatives with imidazole-2-aldoxime and 1,2,4-triazole-3-hydroxamic acid units were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. Using paraoxon (POX) as a model organophosphate, it was shown that 6-methyluracil derivatives linked with hydroxamic acid are able to reactivate POX-inhibited human acetylcholinesterase (AChE) in vitro. The reactivating efficacy of one compound (5b) is lower than that of pyridinium-2-aldoxime (2-PAM). Meanwhile, unlike 2-PAM, in vivo study showed that the lead compound 5b is able: (1) to reactivate POX-inhibited AChE in the brain; (2) to decrease death of neurons and, (3) to prevent memory impairment in rat model of POX-induced neurodegeneration.
Collapse
Affiliation(s)
- Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation.
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Sofya V Lushchekina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, Moscow, 119334, Russian Federation
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Lilya M Gubaidullina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Lilya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Marina M Shulaeva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Ramilya M Kayumova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Svetlana A Kondrashova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Shamil K Latypov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Patrick Masson
- Kazan Federal University, Kremlyovskaya str., 18, Kazan, 420008, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
18
|
Chambers JE, Meek EC. Novel centrally active oxime reactivators of acetylcholinesterase inhibited by surrogates of sarin and VX. Neurobiol Dis 2019; 133:104487. [PMID: 31158460 DOI: 10.1016/j.nbd.2019.104487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
A novel oxime platform, the substituted phenoxyalkyl pyridinium oximes (US patent 9,227,937), was invented at Mississippi State University with an objective of discovering a brain-penetrating antidote to highly potent organophosphate anticholinesterases, such as the nerve agents. The goal was reactivation of inhibited brain acetylcholinesterase to attenuate the organophosphate-induced hypercholinergic activity that results in glutamate-mediated excitotoxicity and neuropathology. The currently approved oxime antidote in the US, 2-PAM, cannot do this. Using highly relevant surrogates of sarin and VX that leave acetylcholinesterase phosphylated with the same chemical moiety as their respective nerve agents, in vitro screens and in vivo tests in rats were conducted to identify the most efficacious members of this platform. The most promising novel oximes provided 24-h survival of lethal level surrogate exposure better than 2-PAM in almost all cases, and two of the oximes shortened the time to cessation of seizure-like behavior while 2-PAM did not. The most promising novel oximes attenuated neuropathology as indicated by immunohistochemical stains for both glia and neurons, while 2-PAM did not protect either glia or neurons. These results strongly suggest that these novel oximes can function within the brain to protect it, and therefore show great promise as potential future nerve agent antidotes.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America.
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| |
Collapse
|