1
|
Gupta K. A modular analysis of bile canalicular function and its implications for cholestasis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G14-G22. [PMID: 37192193 PMCID: PMC10259850 DOI: 10.1152/ajpgi.00165.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Hepatocytes produce bile components and secrete them into a lumen, known as a bile canaliculus, that is formed by the apical membranes of adjoining hepatocytes. Bile canaliculi merge to form tubular structures that subsequently connect to the canal of Hering and larger intra- and extrahepatic bile ducts formed by cholangiocytes, which modify bile and enable flow through the small intestine. The major functional requirements for bile canaliculi are the maintenance of canalicular shape to preserve the blood-bile barrier and regulation of bile flow. These functional requirements are mediated by functional modules, primarily transporters, the cytoskeleton, cell-cell junctions, and mechanosensing proteins. I propose here that bile canaliculi behave as robust machines whereby the functional modules act in a coordinated manner to perform the multistep task of maintaining canalicular shape and bile flow. Cholestasis, the general term for aberrant bile flow, stems from drug/toxin-induced or genetic dysregulation of one or more of the protein components in the functional modules. Here, I discuss the interactions between components of the various functional modules in bile canaliculi and describe how these functional modules regulate canalicular morphology and function. I use this framework to provide a perspective on recent studies of bile canalicular dynamics.
Collapse
Affiliation(s)
- Kapish Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Engineering MechanoBiology, The University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Park JE, Ahn CH, Lee HJ, Sim DY, Park SY, Kim B, Shim BS, Lee DY, Kim SH. Antioxidant-Based Preventive Effect of Phytochemicals on Anticancer Drug-Induced Hepatotoxicity. Antioxid Redox Signal 2023; 38:1101-1121. [PMID: 36242510 DOI: 10.1089/ars.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Drug-induced liver injury (DILI) or hepatotoxicity has been a hot issue to overcome on the safety and physiological function of the liver, since it is known to have biochemical, cellular, immunological, and molecular alterations in the liver mainly induced by alcohol, chemicals, drugs, heavy metals, and genetic factors. Recently efficient therapeutic and preventive strategies by some phytochemicals are of interest, targeting oxidative stress-mediated hepatotoxicity alone or in combination with anticancer drugs. Recent Advances: To assess DILI, the variety of in vitro and in vivo animal models has been developed mainly by using carbon tetrachloride, d-galactosamine, acetaminophen, and lipopolysaccharide. Also, the mechanisms on hepatotoxicity by several drugs and herbs have been explored in detail. Recent studies reveal that antioxidants including vitamins and some phytochemicals were reported to prevent against DILI. Critical Issues: Antioxidant therapy with some phytochemicals is noteworthy, since oxidative stress is critically involved in DILI via production of chemically reactive oxygen species or metabolites, impairment of mitochondrial respiratory chain, and induction of redox cycling. Future Directions: For efficient antioxidant therapy, DILI susceptibility, Human Leukocyte Antigen genetic factors, biomarkers, and pathogenesis implicated in hepatotoxicity should be further explored in association with oxidative stress-mediated signaling, while more randomized preclinical and clinical trials are required with optimal safe doses of drugs and/or phytochemicals alone or in combination for efficient clinical practice along with the development of advanced DILI diagnostic tools.
Collapse
Affiliation(s)
- Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Yeon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Chen C, Qian J, Zhao X, Han X, Tang X, Gao J, Liu Y, Jiang J, Wen B. Metabolic profiling of emodin drug-induced liver injury and silybin treatment in rats using UPLC-Q-TOF-MS: A metabolomic and mechanistic approach. Biomed Chromatogr 2022; 36:e5469. [PMID: 35904380 DOI: 10.1002/bmc.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Silybin, an active component in the plant Silybum marianum (L.) Gaertn. is commonly used to protect against liver disease. We investigated silybin's protective potential in rat liver against emodin-induced liver injury 4wk. Aspartate aminotransferase and direct bilirubin serum biomarkers for liver toxicity were significantly increased and liver histopathology revealed cholestasis and necrosis in rats given emodin only, whereas AST and total bile acid in rats given emodin and silybin simultaneously were changed compared to rats given emodin. Liver gene and protein levels of Cyp7a1 and Bsep for cholesterol metabolism, bile acid synthesis and transport were significantly altered with emodin, where cotreatment with silybin attenuated emodin's adverse effect. Metabolomic analysis with UPLC-Q-TOF-MS determined eight potential metabolite biomarkers in serum, urine, and liver tissue. Network analysis was conducted to conceptualize interplay of genes, metabolites, and metabolic pathways for cholesterol metabolism and bile acid synthesis for liver injury. Overall, rats given only emodin was shown to be a sound model to investigate fat-associated DILI and that cotreatment with silybin prevents fatty liver injury. This metabolomic study reveal that emodin-induced fatty liver injury has disrupted bile acid synthesis, vitamin B6 and glycerophospholipid metabolism pathways, and that silybin ameliorates liver injury on these compromised pathways.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jiahui Qian
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xinyu Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xuyang Han
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P. R. China
| | - Xu Tang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Junfeng Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
4
|
Zhang MY, Luo M, Wang JP. FXR expression in rats of hilar cholangiocarcinoma. Sci Rep 2022; 12:8741. [PMID: 35610302 PMCID: PMC9130506 DOI: 10.1038/s41598-022-12850-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
The study objective was to detect the expression of farnesoid X receptor (FXR) in a rat model of hilar cholangiocarcinoma to provide a new therapeutic target for gene therapy in hilar cholangiocarcinoma. Sixty male Wistar rats (weighing 190 ± 8 g) were randomly divided into three groups (experimental group, control group and sham operation group, 20 rats in each group). The three groups were fed a standard diet. The QBC939 cell suspension of cholangiocarcinoma was injected into the hilar bile duct in the experimental group with a microsyringe. The control group was injected with normal saline, and the sham operation group was not injected with any drugs. A modified tail suspension test (TST) was used to evaluate the mental state and physical activity of rats every day. At 5 weeks, one rat in the experimental group was euthanized, and the changes in the hilar bile duct were recorded. The procedure was repeated at one and half months. After one and half months, hilar cholangiocarcinoma only occurred in the experimental group. Pathological examination confirmed the formation of tumours, and hilar bile duct tissues were taken from the three groups. FXR expression in the hilar bile duct was detected by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. After two weeks, the rats in the experimental group ate less, and their weight was significantly reduced. One and half months later, hilar cholangiocarcinoma was detected in 16 rats in the experimental group. The levels of alanine aminotransferase and aspartate transaminase in the experimental group were higher than those in the other two groups. The ratio of FXR/GAPDH mRNA was significantly different among the hilar cholangiocarcinoma, control and sham operation groups. Under the light microscope, FXR protein reacted with anti-FXR antibody and showed granular expression. Every pathological section included 4800 cells. A total of 1856 positive cells were in the experimental group, 3279 positive cells were in the control group, and 3371 positive cells were in the sham operation group. FXR expression in the hilar cholangiocarcinoma of rats was significantly lower than that in normal hilar bile duct tissues, suggesting that drugs targeting FXR may be a new strategy for the treatment of hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Luo
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie-Ping Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
5
|
Zhang MY, Luo M, He K, Xia XM, Wang JP. NTCP Change in Rats of Hilar Cholangiocarcinoma and Therapeutic Significance. Technol Cancer Res Treat 2022; 21:15330338221109646. [PMID: 35730199 PMCID: PMC9228640 DOI: 10.1177/15330338221109646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: The study aims to detect the expression of Na+/taurocholate cotransporter polypeptide in hilar cholangiocarcinoma of rat model, to provide a new therapeutic target for gene therapy of hilar cholangiocarcinoma. Methods: 60 male Wistar rats (weighing 190 ± 8 g) were randomly divided into 3 groups (experimental group, control group, and sham operation group; 20 rats in each group). The 3 groups were fed with standard diet. The QBC939 cell suspension of cholangiocarcinoma was injected into the hilar bile duct in the experimental group with a micro syringe. The control group was injected with normal saline, and the sham operation group was not injected with any drugs. Comprehensive behavior score and Basso Beattie Bresnahan were used to evaluate the mental state and exercise of rats every day. At 5 weeks, one rat in the experimental group was killed, and the changes in hilar bile duct were recorded. The procedure was repeated at one and half months. After one and half months, hilar cholangiocarcinoma only occurred in the experimental group. Pathological examination confirmed the formation of tumor, and hilar bile duct tissues were taken from the 3 groups. Na+/taurocholate cotransporter polypeptide expression in hilar bile duct was detected by real-time polymerase chain reaction and immunohistochemistry. Results: After 2 weeks, the rats in experimental group ate less, and their weight was significantly reduced compared with the other 2 groups. One and half months later, hilar cholangiocarcinoma was detected in 16 rats in the experimental group. The levels of alanine aminotransferase and aspartate transaminase in the experimental group were higher than those in the other 2 groups. The ratio of Na+/taurocholate cotransporter polypeptide/GAPDH mRNA in hilar cholangiocarcinoma, control group, and sham operation group was significantly different. Under the light microscope, Na+/taurocholate cotransporter polypeptide protein reacted with anti-Na+/taurocholate cotransporter polypeptide antibody and showed granular expression. Every pathological section included 4800 cells. 3823 positive cells were in the experimental group, 1765 positive cells were in the control group, and 1823 positive cells were in the sham operation group. Conclusions: Na+/taurocholate cotransporter polypeptide expression in hilar cholangiocarcinoma of rats was significantly higher than normal hilar bile duct tissues, suggesting that drugs targeting Na+/taurocholate cotransporter polypeptide may be a new strategy for the treatment of hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Luo
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kai He
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian-Ming Xia
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie-Ping Wang
- Department of Rehabilitation, 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Zhang MY, Wang JP, He K, Xia XM. Bsep expression in hilar cholangiocarcinoma of rat model. Sci Rep 2021; 11:2861. [PMID: 33536605 PMCID: PMC7858616 DOI: 10.1038/s41598-021-82636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Develop a rat model of hilar cholangiocarcinoma for detecting bile salt export pump (Bsep) expression in hilar cholangiocarcinoma tissues, in order to provide a new therapeutic target for the gene therapy of hilar cholangiocarcinoma. Sixty male Wistar rats (body weight, 190 ± 8 g) were randomly divided into three groups (the experimental group, the control group and the sham operation group, n = 20 each) as follows: The three groups were fed a standard diet, the experimental group was injected by cholangiocarcinoma QBC939 cell suspension along the hilar bile duct into the bile duct bifurcation with microsyringe, the control group was injected by normal saline, the sham operation group did not inject anything. Every day assess the rats’ mental state, diet, and motion by using Basso–Beattie–Bresnahan and combined behavioral score. At 4 weeks, one rat of the experimental group was sacrificed after it was administered anesthesia, and we recorded changes in hilar bile duct size, texture, and form. This procedure was repeated at 6 weeks. After 6 weeks, hilar cholangiocarcinoma developed only in the experimental group, thereby establishing an experimental model for studying QBC939-induced hilar cholangiocarcinoma. Tumor formation was confirmed by pathological examination, and hilar bile duct tissues were harvested from both the groups. A real-time polymerase chain reaction assay and an immunohistochemical assay were used to analyze the expression of Bsep in hilar bile duct tissues of each group. From the second week, the rats in experimental group began to eat less, and their body mass decreased compared with control group and sham operation group. After 6 weeks, we detected hilar cholangiocarcinoma in the hilar bile duct tissues of 18 rats (90%) in the experimental group. In the experimental group with hilar cholangiocarcinoma, we found that the levels of total cholesterol, total bilirubin, and direct bilirubin were higher compared with those in the control group and sham operation group. Simultaneously, muddy stones emerged from the bile ducts of rats in the experimental group. The Bsep/Gapdh mRNA ratio in hilar cholangiocarcinoma, control group and sham operation group differed markedly. Light microscopy revealed a granular pattern of Bsep protein expression which reacted with the anti-Bsep antibody. Each section was randomly divided into six regions, with 80 cells were observed in every region. Sections with > 10% positive cells were designated positive, Sections with < 10% positive cells were designated negative. Each group included 4800 cells. In the experimental group, 1200 cells (25%) were positive, in the control group, 3648 cells (76%) were positive and in the sham operation group 3598 cells (75%) were positive, and this difference was statistically significant. Bsep expression significantly decreased in hilar cholangiocarcinoma of rats than those in control group and sham operation group, suggesting that drugs targeting Bsep are a new strategy for hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Jie-Ping Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kai He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xian-Ming Xia
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| |
Collapse
|
7
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020; 132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Bile acids has gradually become a new focus in various diseases, and ASBT as a transporter responsible for the reabsorption of ileal bile acids, is a key hinge associated to the bile acids-cholesterol balance and bile acids of enterohepatic circulation. The cumulative studies have also shown that ASBT is a promising target for treatment of liver, gallbladder, intestinal and metabolic diseases. This article briefly reviewed the process of bile acids enterohepatic circulation, as well as the regulations of ASBT expression, covering transcription factors, nuclear receptors and gut microbiota. In addition, the relationship between ASBT and various diseases were discussed in this paper. According to the structural classification of ASBT inhibitors, the research status of ASBT inhibitors and potential ASBT inhibitors of traditional Chinese medicine (such resveratrol, jatrorrhizine in Coptis chinensis) were summarized. This review provides a basis for the development of ASBT inhibitors and the treatment strategy of related diseases.
Collapse
Affiliation(s)
- Na Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ya-Qian Dong
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guo-Xiang Jia
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Si-Miao Fan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shan-Ze Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shen-Shen Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
8
|
Yokoi T. [Recent advances in evaluation studies for drug-induced liver injury]. Nihon Yakurigaku Zasshi 2020; 155:323-328. [PMID: 32879174 DOI: 10.1254/fpj.20027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the recent progress in drug metabolism and pharmacokinetics studies, the attrition due to pharmacokinetics in clinical trials and post-marketing was reduced to less than 1%. On the other hand, attrition of clinical trials due to adverse effects and toxicity has remained high. In particular, drug-induced liver injury (DILI) is a major cause of discontinuation of clinical trials and withdrawal of drug candidates after marketing. DILI is roughly divided into intrinsic and idiosyncratic. The former is relatively easy to predict its onset in preclinical drug development, but the latter's onset mechanism is still unknown and its onset prediction is difficult. We are investigating to develop an experimental animal model of idiosyncratic DILI (iDILI), clarify the pathogenic mechanism, and apply the obtained biomarker information to the establishment of an in vitro cell-based prediction test system. In this paper, we will introduce various animal models of iDILI, present status of pathogenic mechanism study, and classification of iDILI drugs, and introduce the recent progress of in vitro cell-based prediction test system and new causative factors of iDILI.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine
| |
Collapse
|
9
|
Bile canaliculi contract autonomously by releasing calcium into hepatocytes via mechanosensitive calcium channel. Biomaterials 2020; 259:120283. [PMID: 32827796 DOI: 10.1016/j.biomaterials.2020.120283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Drug-induced hepatocellular cholestasis leads to altered bile flow. Bile is propelled along the bile canaliculi (BC) by actomyosin contractility, triggered by increased intracellular calcium (Ca2+). However, the source of increased intracellular Ca2+ and its relationship to transporter activity remains elusive. We identify the source of the intracellular Ca2+ involved in triggering BC contractions, and we elucidate how biliary pressure regulates Ca2+ homeostasis and associated BC contractions. Primary rat hepatocytes were cultured in collagen sandwich. Intra-canalicular Ca2+ was measured with fluo-8; and intra-cellular Ca2+ was measured with GCaMP. Pharmacological modulators of canonical Ca2+-channels were used to study the Ca2+-mediated regulation of BC contraction. BC contraction correlates with cyclic transfer of Ca2+ from BC to adjacent hepatocytes, and not with endoplasmic reticulum Ca2+. A mechanosensitive Ca2+ channel (MCC), Piezo-1, is preferentially localized at BC membranes. The Piezo-1 inhibitor GsMTx-4 blocks the Ca2+ transfer, resulting in cholestatic generation of BC-derived vesicles whereas Piezo-1 hyper-activation by Yoda1 increases the frequency of Ca2+ transfer and BC contraction cycles. Yoda1 can recover normal BC contractility in drug-induced hepatocellular cholestasis, supporting that Piezo-1 regulates BC contraction cycles. Finally, we show that hyper-activating Piezo-1 can be exploited to normalize bile flow in drug-induced hepatocellular cholestasis.
Collapse
|