1
|
Gollapudi BB, Philp K, Weinberg JT. Investigation of mutagenicity of styrene in tumor target and non-target tissues of transgenic Big Blue® mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39544178 DOI: 10.1002/em.22638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Styrene has been shown to induce lung tumors in mice, but not in rats. The current study investigated the potential role of genotoxicity as an initial key event in the mode of action for styrene-induced lung tumors in mice. Transgenic male B6C3F1 Big Blue® mice were treated by oral gavage for 28 consecutive days with 0 (corn oil), 75, 150, or 300 mg/kg/day of styrene. The 300 mg/kg/day represented the tumorigenic dose in the oral gavage carcinogenicity study conducted in B6C3F1 mice. Following a 28-day expression period, mutant frequencies were assessed at the cII locus of the transgene in the tumor target (lung) and non-target tissues (liver, glandular stomach, and duodenum). Mice treated with N-ethyl-N-nitrosourea (40 mg/kg/day) by oral gavage on Days 1, 2, and 3 of the study and sacrificed on Day 56 served as the positive control group. Genomic DNA was extracted from the selected tissues, processed for the recovery of the transgene into infectious phage, plated onto Escherichia coli strain G1250, and incubated at 37°C for titer determination or at 24°C for the selection of mutant plaques. There were no treatment-related increases in mutant frequency in any of the tissues. The positive control group had a significant increase in the frequency of cII mutants assuring the adequacy of the experimental conditions to detect induced mutations. To conclude, mutagenicity is not considered a plausible initial key event in the mode of action for styrene-induced mouse lung tumors as these data support that styrene is not an in vivo mutagen.
Collapse
Affiliation(s)
| | | | - Jeffrey T Weinberg
- General and Genetic Toxicology, Charles River Laboratories, Ashland, Ohio, USA
| |
Collapse
|
2
|
Frank EA, Meek MEB. Procedural application of mode-of-action and human relevance analysis: styrene-induced lung tumors in mice. Crit Rev Toxicol 2024; 54:134-151. [PMID: 38440945 DOI: 10.1080/10408444.2024.2310600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.
Collapse
Affiliation(s)
- Evan A Frank
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - M E Bette Meek
- School of Epidemiology and Public Health in the Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Moreau M, Fisher J, Andersen ME, Barnwell A, Corzine S, Ranade A, McMullen PD, Slattery SD. NAM-based Prediction of Point-of-contact Toxicity in the Lung: A Case Example With 1,3-dichloropropene. Toxicology 2022; 481:153340. [PMID: 36183849 DOI: 10.1016/j.tox.2022.153340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/13/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24hours after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.
Collapse
Affiliation(s)
- Marjory Moreau
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Jeff Fisher
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Asayah Barnwell
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Sage Corzine
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Aarati Ranade
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Patrick D McMullen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Scott D Slattery
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA.
| |
Collapse
|
4
|
Satoh H, Machino S, Fujii T, Yoshida M, Asano S, Yokoyama Y, Miyajima K. [Important Points at Interpretation ofNongenotoxic-Carcinogenicity Induced by Pesticidesin Rodent Bioassays]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2022; 63:34-42. [PMID: 35264520 DOI: 10.3358/shokueishi.63.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Assessment of carcinogenicity is important for human health at dietary risk assessment of pesticide residues. This article indicated important points on interpretation of carcinogenicity in toxicological evaluation of pesticide residues based on principles of risk analysis in foods by CODEX to be a guide for risk assessors. This guidance was referred from the guidance on carcinogenicity evaluation by international and/or national organizations, and the interpretations of Food Safety Commissions of Japan (FSCJ) published in their risk assessment reports. We focused on carcinogenicity obtained from routine carcinogenicity bioassays in rodents. The guidance includes the purpose and usefulness of the bioassay studies, consideration points to be carcinogenicity and influencing factors to carcinogenicity in the test to judge carcinogenic hazard at hazard identification. Considering on human relevance as carcinogenic hazard also was proposed using practical case examples. Next, a carcinogenic hazard is evaluated on dose-response relationship to judge points of departure on carcinogenicity. At the end of this article, we challenged our recommendation on future assessment of carcinogenicity to progress from hazard to risk.
Collapse
|
5
|
Cohen SM, Zhongyu Y, Bus JS. Relevance of mouse lung tumors to human risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:214-241. [PMID: 32452303 DOI: 10.1080/10937404.2020.1763879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is p < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, University of Nebraska Medical Center , Omaha, NE, USA
- University of Nebraska Medical Center , Omaha, NE, USA
| | | | | |
Collapse
|
6
|
Conolly R, Hill T. Response to Consideration of Styrene Transcriptomic Data Informs Mouse Lung Cyp2F2-Mediated Adverse Outcome Pathway. Toxicol Sci 2020; 175:4. [PMID: 32125430 DOI: 10.1093/toxsci/kfaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
7
|
Andersen ME, Bus JS. Consideration of Styrene Transcriptomic Data Informs Mouse Lung Cyp2F2-Mediated Adverse Outcome Pathway. Toxicol Sci 2020; 175:3-4. [PMID: 32049351 DOI: 10.1093/toxsci/kfaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Melvin E Andersen
- *Andersen ToxConsulting LLC, Denver, NC 28037†Exponent Inc., Midland, Michigan 48640
| | - James S Bus
- *Andersen ToxConsulting LLC, Denver, NC 28037†Exponent Inc., Midland, Michigan 48640
| |
Collapse
|