1
|
Prabhala SV, Marshall B, Galiardi J, Fan Y, Creamer E, Wood DW. Highly selective split intein method for efficient separation and purification of recombinant therapeutic proteins from mammalian cell culture fluid. J Chromatogr A 2024; 1736:465430. [PMID: 39405639 PMCID: PMC11533640 DOI: 10.1016/j.chroma.2024.465430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Biologics and vaccines have been successfully developed over the last few decades to treat many diseases. Each of these drugs must be highly purified for clinical use. Monoclonal antibodies (mAbs), the dominant therapeutic modality on the market, can be easily purified using the standard Protein A affinity platform. However, no generally applicable affinity platforms are available for the manufacture of other therapeutic proteins for clinical use. Thus, multicolumn chromatography processes for widely being used for product purification. These processes demand significant optimization to meet desired product quality attributes, where each step also decreases final yields. In this work, we demonstrate the novel self-removing iCapTag™ affinity tag, which provides a new platform for capturing, concentrating, and purifying recombinant proteins. Importantly, this system provides a tagless target protein, which is suitable for research and clinical use, where the only requirement for tag removal is a small change in buffer pH. No additional proteins, reagents or cofactors are required. We also present case studies demonstrating the use of iCapTag™ for highly efficient purification of untagged interferon alpha 2b, the ML39 single chain variable fragment (scFv), and the receptor binding domain (RBD) of SARS-CoV-2 spike protein. These proteins were expressed and secreted by Expi293 cells with the self-removing tag fused to their N-terminus. We were able to obtain highly pure (> 99 %) tagless protein in a single purification step with high clearance of host cell DNA, tagged precursor, higher and lower molecular weight impurities. Based on these preliminary results, we propose the iCapTag™ as a universal capture platform for diverse classes of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Sai Vivek Prabhala
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States
| | - Brian Marshall
- Eli Lilly and Company, Indianapolis, IN 46285, United States
| | | | - Yamin Fan
- Johnson & Johnson, 4560 Jinke Road, Shanghai 201210, China
| | - Ekaterina Creamer
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, United States
| | - David W Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States; Protein Capture Science LLC, Columbus, OH 43212, United States.
| |
Collapse
|
2
|
Wigenstam E, Artursson E, Bucht A, Thors L. Pharmacological prophylaxis with pyridostigmine bromide against nerve agents adversely impact on airway function in an ex vivo rat precision-cut lung slice model. Toxicol Mech Methods 2023; 33:732-740. [PMID: 37537757 DOI: 10.1080/15376516.2023.2238060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
The carbamate pyridostigmine bromide (PB) is the only fielded pharmacological prophylaxis for military use against nerve agents. Previous studies have shown differences in the PB-pretreatment efficacy for various nerve agents and in the influence of post-exposure treatment with common antidotes. In the present study, the aim was to evaluate the possibility of using an ex vivo rat precision-cut lung slice model to determine the impact of PB pretreatment on VX-induced bronchoconstriction. In addition, the efficacy of post-exposure treatment with atropine sulfate following PB-prophylaxis was investigated.Bronchoconstriction was induced by electric-field stimulation and was significantly aggravated by 10 µM PB. Airway recovery was decreased by both 1 and 10 µM PB. Evaluation of acetylcholineesterese inhibition by PB showed that the lower concentration met the clinical criteria of residual enzyme activity while the higher concentration completely inhibited the activity. Exposure to VX with or without pretreatment demonstrated similar contractions. However, VX-incubation following pretreatment caused decreased airway relaxation compared to pretreatment alone. Atropine treatment following PB- and VX-exposure significantly decreased the maximum airway contraction and increased the relaxation.In conclusion, no beneficial effect of PB-prophylaxis on VX-induced contractions was observed. The atropine efficacy to relax airways was significant demonstrating the importance of efficient post-exposure therapeutics to protect against the life-threatening respiratory contractions.
Collapse
Affiliation(s)
- E Wigenstam
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - E Artursson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - A Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - L Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| |
Collapse
|
3
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Wang J, Lu X, Gao R, Pei C, Wang H. Current Progress for Retrospective Identification of Nerve Agent Biomarkers in Biological Samples after Exposure. TOXICS 2022; 10:toxics10080439. [PMID: 36006118 PMCID: PMC9416412 DOI: 10.3390/toxics10080439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Organophosphorus neurotoxic agents (OPNAs) seriously damage the nervous system, inhibiting AChE activity and threatening human health and life. Timely and accurate detection of biomarkers in biomedical samples is an important means for identifying OPNA exposure, helping to recognize and clarify its characteristics and providing unambiguous forensic evidence for retrospective research. It is therefore necessary to summarize the varieties of biomarkers, recognize their various characteristics, and understand the principal research methods for these biomarkers in the retrospective detection of OPNA exposure. Common biomarkers include mainly intact agents, degradation products and protein adducts. Direct agent identification in basic experimental research was successfully applied to the detection of free OPNAs, however, this method is not applicable to actual biomedical samples because the high reactivity of OPNAs promotes rapid metabolism. Stepwise degradation products are important targets for retrospective research and are usually analyzed using a GC–MS, or an LC–MS system after derivatization. The smaller window of detection time requires that sampling be accomplished within 48 h, increasing the obstacles to determining OPNA exposure. For this reason, the focus of retrospective identification of OPNA exposure has shifted to protein adducts with a longer lifetime. Compared to the fluoride-induced reactivation method, which cannot be used for aged adducts, digestive peptide analysis is the more elegant method for detecting various adducts, identifying more active sites, exploring potential biomarkers and excavating characteristic ions. Retrospective identification of biomarkers after OPNA poisoning is of primary importance, providing unambiguous evidence for forensic analysis in actual cases and judgment of chemical accidents. At present, degradation products, the nonapeptide from BChE adducts and Y411 from human serum adducts are used successfully in actual cases of OPNA exposure. However, more potential biomarkers are still in the discovery stage, which may prove inconclusive. Therefore, there is an urgent need for research that screens biomarker candidates with high reactivity and good reliability from the potential candidates. In addition, mass spectrometry detection with high resolution and reactivity and an accurate data processing system in the scanning mode must also be further improved for the retrospective identification of unknown agents.
Collapse
|
5
|
Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomater 2021; 124:270-281. [PMID: 33529769 DOI: 10.1016/j.actbio.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Biotherapeutics have achieved global economic success due to their high specificity towards their drug targets, providing exceptional safety and efficiency. The ongoing shift away from small molecule drugs towards biotherapeutics heightens the need to further improve the pharmacokinetics of these biological drugs. Three pervasive obstacles that limit the therapeutic capacity of biotherapeutics are proteolytic degradation, circulating half-life, and the development of anti-drug antibodies. These challenges can culminate in limited efficiency and consequently warrant the need for higher drug doses and more frequent administration. We have explored the coupling of biotherapeutics to long-lived and biocompatible red blood cells (RBCs) to address limited pharmacokinetics. Butyrylcholinesterase (BChE), for example, provides prophylactic protection against organophosphate nerve agents (OPNAs), yet the short circulation life of the drug requires extraordinary doses. Herein, we report the rapid and tunable chemical engineering of BChE to RBC membranes to create a cell-based delivery system that retains the enzyme activity and enhances stability. In a three-step process that first pre-modifies BChE with a cell-reactive polymer chain, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to the surface of each RBC without diminishing the bioscavenging capacity of the enzyme. Critically, this membrane-engineering approach was cell-tolerated with minimal hemolysis observed. These results provide strong evidence for the ability of engineered RBCs to serve as an enhanced biotherapeutic delivery vehicle. STATEMENT OF SIGNIFICANCE: Organophosphate nerve agents (OPNAs) are one of the most lethal forms of chemical warfare. After exposure to OPNAs, a patient is given life-saving therapeutics, such as atropine and oxime. However, these drugs are limited, and the patient can still suffer from irreparable injuries. Given the toxicity of OPNAs, access to a prophylactic is vital. We have created an enhanced delivery system for prophylactic butyrylcholinesterase (BChE) by engineering this biotherapeutic to the red blood cell (RBC) surface. In three simple steps that first pre-modifies BChE with a cell-reactive polymer, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to a single RBC while retaining the enzyme's activity and enhancing its stability.
Collapse
|
6
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|