1
|
Moree S, Böhm L, Hoffmann T, Schwab WG. Kinetics of Secoisolariciresinol Glucosyltransferase LuUGT74S1 and Its Mutants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20005-20013. [PMID: 39213532 PMCID: PMC11403609 DOI: 10.1021/acs.jafc.4c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The lignan secoisolariciresinol (SECO) diglucoside (SDG) is a phytoestrogen with diverse effects. LuUGT74S1 glucosylates SECO to SDG, whereby only small amounts of the monoglucoside SMG are formed intermediately, which exhibit increased activity. To identify critical amino acids that are important for enzymatic activity and the SMG/SDG ratio, 3D structural modeling and docking, as well as site-directed mutation studies, were performed. Enzyme assays with ten mutants revealed that four of them had identical kinetic data to LuUGT74S1, while three showed reduced and one increased catalytic efficiency kcat/Km. S82F and E189L substitutions resulted in the complete absence of activity. A17 and Q136 are crucial for the conversion of SMG to SDG as A17S and Q136F mutants exhibited the highest SMG/SDG ratios of 0.7 and 0.4. Kinetic analyses show that diglucosylation is an essentially irreversible reaction, while monoglycosylation is kinetically favored. The results lay the foundation for the biotechnological production of SMG.
Collapse
Affiliation(s)
- Sadiq
Saleh Moree
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
- Department
of Biochemistry, University of Thamar, P.O. Box 87246, Sana’a-Tiaz
Road, Thamar 87246, Yemen
| | - Lukas Böhm
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| | - Wilfried G. Schwab
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| |
Collapse
|
2
|
Lethe MCL, Paris V, Wang X, Chan CTY. Similarities in Structure and Function of UDP-Glycosyltransferase Homologs from Human and Plants. Int J Mol Sci 2024; 25:2782. [PMID: 38474028 PMCID: PMC10932239 DOI: 10.3390/ijms25052782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The uridine diphosphate glycosyltransferase (UGT) superfamily plays a key role in the metabolism of xenobiotics and metabolic wastes, which is essential for detoxifying those species. Over the last several decades, a huge effort has been put into studying human and mammalian UGT homologs, but family members in other organisms have been explored much less. Potentially, other UGT homologs can have desirable substrate specificity and biological activities that can be harnessed for detoxification in various medical settings. In this review article, we take a plant UGT homology, UGT71G1, and compare its structural and biochemical properties with the human homologs. These comparisons suggest that even though mammalian and plant UGTs are functional in different environments, they may support similar biochemical activities based on their protein structure and function. The known biological functions of these homologs are discussed so as to provide insights into the use of UGT homologs from other organisms for addressing human diseases related to UGTs.
Collapse
Affiliation(s)
- Mary Caroline L. Lethe
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
| | - Vincent Paris
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
| | - Xiaoqiang Wang
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA (V.P.)
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
3
|
Liao J, Lederer V, Bardhi A, Zou Z, Hoffmann TD, Sun G, Song C, Hoffmann T, Schwab W. Acceptors and Effectors Alter Substrate Inhibition Kinetics of a Plant Glucosyltransferase NbUGT72AY1 and Its Mutants. Int J Mol Sci 2023; 24:ijms24119542. [PMID: 37298492 DOI: 10.3390/ijms24119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
One of the main obstacles in biocatalysis is the substrate inhibition (SI) of enzymes that play important roles in biosynthesis and metabolic regulation in organisms. The promiscuous glycosyltransferase UGT72AY1 from Nicotiana benthamiana is strongly substrate-inhibited by hydroxycoumarins (inhibitory constant Ki < 20 µM), but only weakly inhibited when monolignols are glucosylated (Ki > 1000 µM). Apocarotenoid effectors reduce the inherent UDP-glucose glucohydrolase activity of the enzyme and attenuate the SI by scopoletin derivatives, which could also be achieved by mutations. Here, we studied the kinetic profiles of different phenols and used the substrate analog vanillin, which has shown atypical Michaelis-Menten kinetics in previous studies, to examine the effects of different ligands and mutations on the SI of NbUGT72AY1. Coumarins had no effect on enzymatic activity, whereas apocarotenoids and fatty acids strongly affected SI kinetics by increasing the inhibition constant Ki. Only the F87I mutant and a chimeric version of the enzyme showed weak SI with the substrate vanillin, but all mutants exhibited mild SI when sinapaldehyde was used as an acceptor. In contrast, stearic acid reduced the transferase activity of the mutants to varying degrees. The results not only confirm the multi-substrate functionality of NbUGT72AY1, but also reveal that the enzymatic activity of this protein can be fine-tuned by external metabolites such as apocarotenoids and fatty acids that affect SI. Since these signals are generated during plant cell destruction, NbUGT72AY1 likely plays an important role in plant defense by participating in the production of lignin in the cell wall and providing direct protection through the formation of toxic phytoalexins.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Veronika Lederer
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Alba Bardhi
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, China
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| |
Collapse
|
4
|
Liao J, Sun G, Kurze E, Steinchen W, Hoffmann TD, Song C, Zou Z, Hoffmann T, Schwab WG. Subfunctionalization of a monolignol to a phytoalexin glucosyltransferase is accompanied by substrate inhibition. PLANT COMMUNICATIONS 2023; 4:100506. [PMID: 36566353 DOI: 10.1016/j.xplc.2022.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Uridine diphosphate-dependent glycosyltransferases (UGTs) mediate the glycosylation of plant metabolites, thereby altering their physicochemical properties and bioactivities. Plants possess numerous UGT genes, with the encoded enzymes often glycosylating multiple substrates and some exhibiting substrate inhibition kinetics, but the biological function and molecular basis of these phenomena are not fully understood. The promiscuous monolignol/phytoalexin glycosyltransferase NbUGT72AY1 exhibits substrate inhibition (Ki) at 4 μM scopoletin, whereas the highly homologous monolignol StUGT72AY2 is inhibited at 190 μM. We therefore used hydrogen/deuterium exchange mass spectrometry and structure-based mutational analyses of both proteins and introduced NbUGT72AY1 residues into StUGT72AY2 and vice versa to study promiscuity and substrate inhibition of UGTs. A single F87I and chimeric mutant of NbUGT72AY1 showed significantly reduced scopoletin substrate inhibition, whereas its monolignol glycosylation activity was almost unaffected. Reverse mutations in StUGT72AY2 resulted in increased scopoletin glycosylation, leading to enhanced promiscuity, which was accompanied by substrate inhibition. Studies of 3D structures identified open and closed UGT conformers, allowing visualization of the dynamics of conformational changes that occur during catalysis. Previously postulated substrate access tunnels likely serve as drainage channels. The results suggest a two-site model in which the second substrate molecule binds near the catalytic site and blocks product release. Mutational studies showed that minor changes in amino acid sequence can enhance the promiscuity of the enzyme and add new capabilities such as substrate inhibition without affecting existing functions. The proposed subfunctionalization mechanism of expanded promiscuity may play a role in enzyme evolution and highlights the importance of promiscuous enzymes in providing new functions.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried G Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| |
Collapse
|
5
|
Parisi M, Verrillo M, Luciano MA, Caiazzo G, Quaranta M, Scognamiglio F, Di Meo V, Villani A, Cantelli M, Gallo L, Altobelli GG, Poggi S, Spaccini R, Fabbrocini G. Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040840. [PMID: 36840187 PMCID: PMC9966275 DOI: 10.3390/plants12040840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/12/2023]
Abstract
Photoaging is the premature aging of the skin caused by repeated exposure to ultraviolet (UV) rays. The harmful effects of UV rays-from the sun or from artificial sources-alter normal skin structures and cause visible damage, especially in the most exposed areas. Fighting premature aging is one of the most important challenges of the medical landscape. Additionally, consumers are looking for care products that offer multiple benefits with reduced environmental and economic impact. The growing requests for bioactive compounds from aromatic plants for pharmaceutical and cosmetic applications have to find new sustainable methods to increase the effectiveness of new active formulations derived from eco-compatible technologies. The principle of sustainable practices and the circular economy favor the use of bioactive components derived from recycled biomass. The guidelines of the European Commission support the reuse of various types of organic biomass and organic waste, thus transforming waste management problems into economic opportunities. This review aims to elucidate the main mechanisms of photoaging and how these can be managed using natural renewable sources and specific bioactive derivatives, such as humic extracts from recycled organic biomass, as potential new actors in modern medicine.
Collapse
Affiliation(s)
- Melania Parisi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Mariavittoria Verrillo
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Department of Agricultural Sciences, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Maria Antonietta Luciano
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Giuseppina Caiazzo
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Maria Quaranta
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Scognamiglio
- Department of Agricultural Sciences, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Vincenzo Di Meo
- Department of Agricultural Sciences, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Cantelli
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Lucia Gallo
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Giovanna G. Altobelli
- Department of Advanced Biomedical Sciences, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Serena Poggi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Department of Agricultural Sciences, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
UGT72, a Major Glycosyltransferase Family for Flavonoid and Monolignol Homeostasis in Plants. BIOLOGY 2022; 11:biology11030441. [PMID: 35336815 PMCID: PMC8945231 DOI: 10.3390/biology11030441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Phenylpropanoids are specialized metabolites playing crucial roles in plant developmental processes and in plant defense towards pathogens. The attachment of sugar moieties to these small hydrophobic molecules renders them more hydrophilic and increases their solubility. The UDP-glycosyltransferase 72 family (UGT72) of plants has been shown to glycosylate mainly two classes of phenylpropanoids, (i) the monolignols that are the building blocks of lignin, the second most abundant polymer after cellulose, and (ii) the flavonoids, which play determinant roles in plant interactions with other organisms and in response to stress. The purpose of this review is to bring an overview of the current knowledge of the UGT72 family and to highlight its role in the homeostasis of these molecules. Potential applications in pharmacology and in wood, paper pulp, and bioethanol production are given within the perspectives. Abstract Plants have developed the capacity to produce a diversified range of specialized metabolites. The glycosylation of those metabolites potentially decreases their toxicity while increasing their stability and their solubility, modifying their transport and their storage. The UGT, forming the largest glycosyltransferase superfamily in plants, combine enzymes that glycosylate mainly hormones and phenylpropanoids by using UDP-sugar as a sugar donor. Particularly, members of the UGT72 family have been shown to glycosylate the monolignols and the flavonoids, thereby being involved in their homeostasis. First, we explore primitive UGTs in algae and liverworts that are related to the angiosperm UGT72 family and their role in flavonoid homeostasis. Second, we describe the role of several UGT72s glycosylating monolignols, some of which have been associated with lignification. In addition, the role of other UGT72 members that glycosylate flavonoids and are involved in the development and/or stress response is depicted. Finally, the importance to explore the subcellular localization of UGTs to study their roles in planta is discussed.
Collapse
|