1
|
Kakui H, Ujino-Ihara T, Hasegawa Y, Tsurisaki E, Futamura N, Iwai J, Higuchi Y, Fujino T, Suzuki Y, Kasahara M, Yamaguchi K, Shigenobu S, Otani M, Nakano M, Nameta M, Shibata S, Ueno S, Moriguchi Y. A single-nucleotide substitution of CjTKPR1 determines pollen production in the gymnosperm plant Cryptomeria japonica. PNAS NEXUS 2023; 2:pgad236. [PMID: 37559748 PMCID: PMC10408704 DOI: 10.1093/pnasnexus/pgad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Pollinosis, also known as pollen allergy or hay fever, is a global problem caused by pollen produced by various plant species. The wind-pollinated Japanese cedar (Cryptomeria japonica) is the largest contributor to severe pollinosis in Japan, where increasing proportions of people have been affected in recent decades. The MALE STERILITY 4 (MS4) locus of Japanese cedar controls pollen production, and its homozygous mutants (ms4/ms4) show abnormal pollen development after the tetrad stage and produce no mature pollen. In this study, we narrowed down the MS4 locus by fine mapping in Japanese cedar and found TETRAKETIDE α-PYRONE REDUCTASE 1 (TKPR1) gene in this region. Transformation experiments using Arabidopsis thaliana showed that single-nucleotide substitution ("T" to "C" at 244-nt position) of CjTKPR1 determines pollen production. Broad conservation of TKPR1 beyond plant division could lead to the creation of pollen-free plants not only for Japanese cedar but also for broader plant species.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 188-0002, Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
| | - Yoichi Hasegawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
| | - Eriko Tsurisaki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
| | - Junji Iwai
- Forest and Forestry Technology Division, Niigata Prefectural Forest Research Institute, Niigata 958-0264, Japan
| | - Yuumi Higuchi
- Forest and Forestry Technology Division, Niigata Prefectural Forest Research Institute, Niigata 958-0264, Japan
| | - Takeshi Fujino
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Katsushi Yamaguchi
- Trans-Scale Biology Center, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Masahiro Otani
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Masaaki Nameta
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | - Shinsuke Shibata
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
| | | |
Collapse
|
2
|
CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Sci Rep 2021; 11:16186. [PMID: 34376731 PMCID: PMC8355236 DOI: 10.1038/s41598-021-95547-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptomeria japonica (Japanese cedar or sugi) is one of the most important coniferous tree species in Japan and breeding programs for this species have been launched since 1950s. Genome editing technology can be used to shorten the breeding period. In this study, we performed targeted mutagenesis using the CRISPR/Cas9 system in C. japonica. First, the CRISPR/Cas9 system was tested using green fluorescent protein (GFP)-expressing transgenic embryogenic tissue lines. Knock-out efficiency of GFP ranged from 3.1 to 41.4% depending on U6 promoters and target sequences. The GFP knock-out region was mottled in many lines, indicating genome editing in individual cells. However, in 101 of 102 mutated individuals (> 99%) from 6 GFP knock-out lines, embryos had a single mutation pattern. Next, we knocked out the endogenous C. japonica magnesium chelatase subunit I (CjChlI) gene using two guide RNA targets. Green, pale green, and albino phenotypes were obtained in the gene-edited cell lines. Sequence analysis revealed random deletions, insertions, and replacements in the target region. Thus, targeted mutagenesis using the CRISPR/Cas9 system can be used to modify the C. japonica genome.
Collapse
|
3
|
Selection and Optimization of Reference Genes for MicroRNA Expression Normalization by qRT-PCR in Chinese Cedar ( Cryptomeria fortunei) under Multiple Stresses. Int J Mol Sci 2021; 22:ijms22147246. [PMID: 34298866 PMCID: PMC8304282 DOI: 10.3390/ijms22147246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) expression analysis is very important for investigating its functions. To date, no research on reference genes (RGs) for miRNAs in gymnosperms, including Cryptomeria fortunei, has been reported. Here, ten miRNAs (i.e., pab-miR159a, cln-miR162, cas-miR166d, pab-miR395b, ppt-miR894, cln-miR6725, novel1, novel6, novel14 and novel16) and three common RGs (U6, 5S and 18S) were selected as candidate RGs. qRT-PCR was used to analyse their expressions in C. fortunei under various experimental conditions, including multiple stresses (cold, heat, drought, salt, abscisic acid and gibberellin) and in various tissues (roots, stems, tender needles, cones and seeds). Four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) were employed to assess the stability of candidate RG expression; the geometric mean and RefFinder program were used to comprehensively evaluate RG stability. According to the results, novel16, cln-miR6725, novel1 and U6 were the most stable RGs for studying C. fortunei miRNA expression. In addition, the expression of three target miRNAs (aly-miR164c-5p, aly-miR168a-5p and smo-miR396) was examined to verify that the selected RGs are suitable for miRNA expression normalisation. This study may aid further investigations of miRNA expression/function in the response of C. fortunei to abiotic stress and provides an important basis for the standardisation of miRNA expression in other gymnosperm species.
Collapse
|
4
|
Kakui H, Tsurisaki E, Shibata R, Moriguchi Y. Factors Affecting the Number of Pollen Grains per Male Strobilus in Japanese Cedar ( Cryptomeria japonica). PLANTS (BASEL, SWITZERLAND) 2021; 10:856. [PMID: 33922663 PMCID: PMC8146487 DOI: 10.3390/plants10050856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Japanese cedar (Cryptomeria japonica) is the most important timber species in Japan; however, its pollen is the primary cause of pollinosis in Japan. The total number of pollen grains produced by a single tree is determined by the number of male strobili (male flowers) and the number of pollen grains per male strobilus. While the number of male strobili is a visible and well-investigated trait, little is known about the number of pollen grains per male strobilus. We hypothesized that genetic and environmental factors affect the pollen number per male strobilus and explored the factors that affect pollen production and genetic variation among clones. We counted pollen numbers of 523 male strobili from 26 clones using a cell counter method that we recently developed. Piecewise Structural Equation Modeling (pSEM) revealed that the pollen number is mostly affected by genetic variation, male strobilus weight, and pollen size. Although we collected samples from locations with different environmental conditions, statistical modeling succeeded in predicting pollen numbers for different clones sampled from branches facing different directions. Comparison of predicted pollen numbers revealed that they varied >3-fold among the 26 clones. The determination of the factors affecting pollen number and a precise evaluation of genetic variation will contribute to breeding strategies to counter pollinosis. Furthermore, the combination of our efficient counting method and statistical modeling will provide a powerful tool not only for Japanese cedar but also for other plant species.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Graduate School of Science and Technology, Niigata University, Niigata City, Niigata 950-2181, Japan;
| | - Eriko Tsurisaki
- Faculty of Agriculture, Niigata University, Niigata City, Niigata 950-2181, Japan; (E.T.); (R.S.)
| | - Rei Shibata
- Faculty of Agriculture, Niigata University, Niigata City, Niigata 950-2181, Japan; (E.T.); (R.S.)
| | - Yoshinari Moriguchi
- Graduate School of Science and Technology, Niigata University, Niigata City, Niigata 950-2181, Japan;
| |
Collapse
|
5
|
Wei FJ, Ueno S, Ujino-Ihara T, Saito M, Tsumura Y, Higuchi Y, Hirayama S, Iwai J, Hakamata T, Moriguchi Y. Construction of a reference transcriptome for the analysis of male sterility in sugi (Cryptomeria japonica D. Don) focusing on MALE STERILITY 1 (MS1). PLoS One 2021; 16:e0247180. [PMID: 33630910 PMCID: PMC7935350 DOI: 10.1371/journal.pone.0247180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Sugi (Cryptomeria japonica D. Don) is an important conifer used for afforestation in Japan. As the genome of this species is 11 Gbps, it is too large to assemble within a short timeframe. Transcriptomics is one approach that can address this deficiency. Here we designed a workflow consisting of three stages to de novo assemble transcriptome using Oases and Trinity. The three transcriptomic stage used were independent assembly, automatic and semi-manual integration, and refinement by filtering out potential contamination. We identified a set of 49,795 cDNA and an equal number of translated proteins. According to the benchmark set by BUSCO, 87.01% of cDNAs identified were complete genes, and 78.47% were complete and single-copy genes. Compared to other full-length cDNA resources collected by Sanger and PacBio sequencers, the extent of the coverage in our dataset was the highest, indicating that these data can be safely used for further studies. When two tissue-specific libraries were compared, there were significant expression differences between male strobili and leaf and bark sets. Moreover, subtle expression difference between male-fertile and sterile libraries were detected. Orthologous genes from other model plants and conifer species were identified. We demonstrated that our transcriptome assembly output (CJ3006NRE) can serve as a reference transcriptome for future functional genomics and evolutionary biology studies.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki, Japan
| | - Saneyoshi Ueno
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki, Japan
- * E-mail:
| | - Tokuko Ujino-Ihara
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki, Japan
| | - Maki Saito
- Forest Research Institute, Toyama Prefectural Agricultural Forestry and Fisheries Research Center, Toyama, Japan
| | - Yoshihiko Tsumura
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yuumi Higuchi
- Niigata Prefectural Forest Research Institute, Niigata, Japan
| | | | - Junji Iwai
- Niigata Prefectural Forest Research Institute, Niigata, Japan
| | - Tetsuji Hakamata
- Shizuoka Prefectural Research Institute of Agriculture and Forestry, Shizuoka, Japan
| | - Yoshinari Moriguchi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Kakui H, Tsurisaki E, Sassa H, Moriguchi Y. An improved pollen number counting method using a cell counter and mesh columns. PLANT METHODS 2020; 16:124. [PMID: 32944062 PMCID: PMC7491178 DOI: 10.1186/s13007-020-00668-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND The determination of pollen number is important in evolutionary, agricultural, and medical studies. Tree species of the Cupressaceae family cause serious pollinosis worldwide. Although Japanese cedar (Cryptomeria japonica) is the most important forestry species in Japan, it is also the biggest cause of pollinosis in the country. Japanese cedar trees have been selected for growth speed and superior morphological traits and then cloned. These clones may vary in their pollen production, but there has been little research on how many pollen grains are produced by a single male strobilus (flower). A recently reported method for counting pollen number with a cell counter was applicable to Arabidopsis species and wheat, but was not suitable for Japanese cedar because the strobilus does not open with heating (e.g. 60 °C, overnight). RESULTS Here, we report an improved pollen counting method for Japanese cedar using a precise and rapid cell counter in combination with home-made mesh columns. The male strobilus was gently crushed using a pestle. Large and small debris were then removed using 100- and 20-μm mesh columns, respectively. We successfully detected pollen sizes and numbers that differed between two clones using this method. CONCLUSIONS This improved method is not only suitable for counting pollen from Japanese cedar, but could also be applied to other species of the Cupressaceae family with hard scale tissue covering the pollen. Moreover, this method could be applied to a broader range of plant species, such as wheat, because there is no need to wait for anthesis and debris can be removed efficiently.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Graduate School of Science and Technology, Niigata University, Niigata, Niigata, 950-2181 Japan
| | - Eriko Tsurisaki
- Faculty of Agriculture, Niigata University, Niigata, Niigata, 950-2181 Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510 Japan
| | - Yoshinari Moriguchi
- Graduate School of Science and Technology, Niigata University, Niigata, Niigata, 950-2181 Japan
| |
Collapse
|
7
|
Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. FORESTS 2020. [DOI: 10.3390/f11060633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant hormone gibberellin (GA) is known to regulate elongating growth, seed germination, and the initiation of flower bud formation, and it has been postulated that GAs originally had functions in reproductive processes. Studies on the mechanism of induction of flowering by GA have been performed in Arabidopsis and other model plants. In coniferous trees, reproductive organ induction by GAs is known to occur, but there are few reports on the molecular mechanism in this system. To clarify the gene expression dynamics of the GA induction of the male strobilus in Cryptomeria japonica, we performed comprehensive gene expression analysis using a microarray. A GA-treated group and a nontreated group were allowed to set, and individual trees were sampled over a 6-week time course. A total of 881 genes exhibiting changed expression was identified. In the GA-treated group, genes related to ‘stress response’ and to ‘cell wall’ were initially enriched, and genes related to ‘transcription’ and ‘transcription factor activity’ were enriched at later stages. This analysis also clarified the dynamics of the expression of genes related to GA signaling transduction following GA treatment, permitting us to compare and contrast with the expression dynamics of genes implicated in signal transduction responses to other plant hormones. These results suggested that various plant hormones have complex influences on the male strobilus induction. Additionally, principal component analysis (PCA) using expression patterns of the genes that exhibited sequence similarity with flower bud or floral organ formation-related genes of Arabidopsis was performed. PCA suggested that gene expression leading to male strobilus formation in C. japonica became conspicuous within one week of GA treatment. Together, these findings help to clarify the evolution of the mechanism of induction of reproductive organs by GA.
Collapse
|
8
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
9
|
Ueno S, Uchiyama K, Moriguchi Y, Ujino-Ihara T, Matsumoto A, Wei FJ, Saito M, Higuchi Y, Futamura N, Kanamori H, Katayose Y, Tsumura Y. Scanning RNA-Seq and RAD-Seq approach to develop SNP markers closely linked to MALE STERILITY 1 ( MS1) in Cryptomeria japonica D. Don. BREEDING SCIENCE 2019; 69:19-29. [PMID: 31086480 PMCID: PMC6507728 DOI: 10.1270/jsbbs.17149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/01/2018] [Indexed: 06/01/2023]
Abstract
Cryptomeria japonica is a major forestry tree species in Japan. Male sterility of the species is caused by a recessive gene, which shows dysfunction of pollen development and results in no dispersed pollen. Because the pollen of C. japonica induces pollinosis, breeding of pollen-free C. japonica is desired. In this study, single nucleotide polymorphism (SNP) markers located at 1.78 and 0.58 cM to a male sterility locus (MS1) were identified from an analysis of RNA-Seq and RAD-Seq, respectively. SNPs closely linked to MS1 were first scanned by a method similar to MutMap, where a type of index was calculated to measure the strength of the linkage between a marker sequence and MS1. Linkage analysis of selected SNP markers confirmed a higher efficiency of the current method to construct a partial map around MS1. Allele-specific PCR primer pair for the most closely linked SNP with MS1 was developed as a codominant marker, and visualization of the PCR products on an agarose gel enabled rapid screening of male sterile C. japonica. The allele-specific primers developed in this study would be useful for establishing the selection of male sterile C. japonica.
Collapse
Affiliation(s)
- Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Yoshinari Moriguchi
- Graduate School of Science and Technology, Niigata University,
8050, Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181,
Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Asako Matsumoto
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Fu-Jin Wei
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Maki Saito
- Toyama Prefectural Agricultural Forestry and Fisheries Research Center, Forestry Research Institute,
Yoshimine 3, Tateyama-cho, Nakashinkawagun, Toyama 930-1362,
Japan
| | - Yumi Higuchi
- Niigata Prefectural Forest Research Institute,
2249-5 Unotoro, Murakami, Niigata 958-0264,
Japan (retired)
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences,
Owashi, Tsukuba, Ibaraki 305-8634,
Japan
| | - Yuichi Katayose
- National Institute of Agrobiological Sciences,
Owashi, Tsukuba, Ibaraki 305-8634,
Japan
| | - Yoshihiko Tsumura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
10
|
Mishima K, Hirao T, Tsubomura M, Tamura M, Kurita M, Nose M, Hanaoka S, Takahashi M, Watanabe A. Identification of novel putative causative genes and genetic marker for male sterility in Japanese cedar (Cryptomeria japonica D.Don). BMC Genomics 2018; 19:277. [PMID: 29685102 PMCID: PMC5914023 DOI: 10.1186/s12864-018-4581-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background Japanese cedar (Cryptomeria japonica) is an important tree for Japanese forestry. Male-sterile marker development in Japanese cedar would facilitate selection of male-sterile plus trees, addressing the widespread social problem of pollinosis and facilitating the identification of heterozygotes, which are useful for breeding. Results This study used next-generation sequencing for single-nucleotide polymorphism discovery in libraries constructed from several organs, including male-sterile and male-fertile strobili. The single-nucleotide polymorphisms obtained were used to construct a high-density linkage map, which enabled identification of a locus on linkage group 9 strongly correlated with male-sterile trait. Expressed sequence tags corresponding to 11 marker loci from 5 isotigs were associated with this locus within 33.4-34.5 cM. These marker loci explained 100% of the phenotypic variation. Several homologs of these sequences are associated with male sterility in rice or Arabidopsis, including a pre-mRNA splicing factor, a DEAD-box protein, a glycosyl hydrolase, and a galactosyltransferase. These proteins are thus candidates for the causal male-sterile gene at the ms-1 locus. After we used a SNaPshot assay to develop markers for marker-assisted selection (MAS), we tested F2 progeny between male-sterile and wild-type plus trees to validate the markers and extrapolated the testing to a larger plus-tree population. We found that two developed from one of the candidates for the causal gene were suitable for MAS. Conclusions More than half of the ESTs and SNPs we collected were new, enlarging the genomic basis for genetic research on Japanese cedar. We developed two SNP markers aimed at MAS that distinguished individuals carrying the male-sterile trait with 100% accuracy, as well as individuals heterozygous at the male-sterile locus, even outside the mapping population. These markers should enable practical MAS for conifer breeding. Electronic supplementary material The online version of this article (10.1186/s12864-018-4581-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Tomonori Hirao
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Miyoko Tsubomura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Miho Tamura
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Manabu Kurita
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Mine Nose
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - So Hanaoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Atsushi Watanabe
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
11
|
Ujino-Ihara T, Ueno S, Uchiyama K, Futamura N. Comprehensive analysis of small RNAs expressed in developing male strobili of Cryptomeria japonica. PLoS One 2018. [PMID: 29529051 PMCID: PMC5846777 DOI: 10.1371/journal.pone.0193665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep sequencing of small RNAs (sRNAs) in developing male strobili of second-generation offspring originating from a nuclear genic male sterile tree of Cryptomeria japonica were performed to characterize sRNA populations in the male strobili at early pollen developmental stages. Comparing to sequences of microRNA (miRNA) families of plant species and sRNAs expressed in the reproductive organs of representative vascular plants, 37 conserved miRNA families were detected, of which eight were ubiquitously expressed in the reproductive organs of land plant species. In contrast, miR1083 was common in male reproductive organs of gymnosperm species but absent in angiosperm species. In addition to conserved miRNAs, 199 novel miRNAs candidates were predicted. The expression patterns of the obtained sRNAs were further investigated to detect the differentially expressed (DE) sRNAs between genic male sterile and fertile individuals. A total of 969 DE sRNAs were obtained and only three known miRNA families were included among them. These results suggest that both conserved and species-specific sRNAs contribute to the development of male strobili in C. japonica.
Collapse
Affiliation(s)
- Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|