1
|
Montesinos-Navarro A. Nitrogen transfer between plant species with different temporal N-demand. Ecol Lett 2023; 26:1676-1686. [PMID: 37340907 DOI: 10.1111/ele.14279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Phenological segregation among species in a community is assumed to promote coexistence, as using resources at different times reduces competition. However, other unexplored nonalternative mechanisms can also result in a similar outcome. This study first tests whether plants can redistribute nitrogen (N) among them based on their nutritional temporal demand (i.e. phenology). Field 15 N labelling experiments showed that 15 N is transferred between neighbour plants, mainly from low N-demand (late flowering species, not reproducing yet) to high N-demand plants (early flowering species, currently flowering-fruiting). This can reduce species' dependence on pulses of water availability, and avoid soil N loss through leaching, having relevant implications in the structuring of plant communities and ecosystem functioning. Considering that species phenological segregation is a pervasive pattern in plant communities, this can be a so far unnoticed, but widely spread, ecological process that can predict N fluxes among species in natural communities, and therefore impact our current understanding of community ecology and ecosystem functioning.
Collapse
Affiliation(s)
- A Montesinos-Navarro
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Moncada, Spain
| |
Collapse
|
2
|
Wu H, Zhang J, Rodríguez-Calcerrada J, Salomón RL, Yin D, Zhang P, Shen H. Large investment of stored nitrogen and phosphorus in female cones is consistent with infrequent reproduction events of Pinus koraiensis, a high value woody oil crop in Northeast Asia. FRONTIERS IN PLANT SCIENCE 2023; 13:1084043. [PMID: 36714788 PMCID: PMC9878279 DOI: 10.3389/fpls.2022.1084043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Pinus koraiensis is famous for its high-quality timber production all the way and is much more famous for its high value health-care nut oil production potential since 1990's, but the less understanding of its reproduction biology seriously hindered its nut productivity increase. Exploring the effects of reproduction on nutrient uptake, allocation and storage help to understand and modify reproduction patterns in masting species and high nut yield cultivar selection and breeding. Here, we compared seasonality in growth and in nitrogen ([N]) and phosphorus ([P]) concentrations in needles, branches and cones of reproductive (cone-bearing) and vegetative branches (having no cones) of P. koraiensis during a masting year. The growth of one- and two-year-old reproductive branches was significantly higher than that of vegetative branches. Needle, phloem and xylem [N] and [P] were lower in reproductive branches than in vegetative branches, although the extent and significance of the differences between branch types varied across dates. [N] and [P] in most tissues were high in spring, decreased during summer, and then recovered by the end of the growing season. Overall, [N] and [P] were highest in needles, lowest in the xylem and intermediate in the phloem. More than half of the N (73.5%) and P (51.6%) content in reproductive branches were allocated to cones. There was a positive correlation between cone number and N and P content in needles (R2 = 0.64, R2 = 0.73) and twigs (R2 = 0.65, R2 = 0.62) of two-year-old reproductive branches. High nutrient sink strength of cones and vegetative tissues of reproductive branches suggested that customized fertilization practices can help improve crop yield in Pinus koraiensis.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| | - Jianying Zhang
- Forestry Research Institute of Heilongjiang Province, Harbin, China
| | - Jesús Rodríguez-Calcerrada
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
| | - Roberto L. Salomón
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
| | - Dongsheng Yin
- Forestry Research Institute of Heilongjiang Province, Harbin, China
| | - Peng Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Kabeya D, Han Q. Seasonal patterns of sugar components and their functions in branches of
Fagus crenata
in association with three reproduction events. Ecol Res 2022. [DOI: 10.1111/1440-1703.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Daisuke Kabeya
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI) Tsukuba Japan
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI) Tsukuba Japan
| |
Collapse
|
4
|
Wang Y, Han Q, Kitajima K, Kurokawa H, Shimada T, Yamaryo T, Kabeya D, Kawasaki T, Satake A. Resource allocation strategies in the reproductive organs of Fagaceae species. Ecol Res 2022. [DOI: 10.1111/1440-1703.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yufei Wang
- Graduate School of Systems Life Sciences Kyushu University Fukuoka Japan
| | - Qingmin Han
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Hiroko Kurokawa
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Takuya Shimada
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | | | - Daisuke Kabeya
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Tatsuro Kawasaki
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Akiko Satake
- Department of Biology Kyushu University Fukuoka Japan
| |
Collapse
|
5
|
Hernán G, Ortega MJ, Tomas F. Specialized compounds across ontogeny in the seagrass Posidonia oceanica. PHYTOCHEMISTRY 2022; 196:113070. [PMID: 34999511 DOI: 10.1016/j.phytochem.2021.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Differences in phenolic composition across different ontogenic stages can be crucial in determining the interaction outcomes between plants and their surrounding biotic environment. In seagrasses, specific phenolic compounds have rarely been analyzed and remain unexplored in ontogenic stages other than non-reproductive adults. Furthermore, it is generally accepted that plants would prioritize defense (e.g., through increased phenolic content) on tissues or stages that are critical for plant fitness but how this affects nutritional quality or plant resources has been scarcely explored. We analyzed how phenolic composition, N and C content and carbohydrate resources varied among different life stages (i.e. old and young leaves of reproductive and non-reproductive plants, and leaves of seedlings) in the seagrass Posidonia oceanica. We identified five phenolic compounds, whose structures were established as hydroxycinnamate esters of tartaric acid. Also, our results show that in all examined ontogenic stages phenolic compounds have the same qualitative composition but inflorescences exhibit higher contents than vegetative tissues. We did not find a reduction in stored resources in reproductive plants, pointing to some kind of compensatory mechanism in the production or storage of resources. In contrast, seedlings seemed to have less phenolic compounds than reproductive plants, perhaps due to limited resources available to allocate to phenolic production. Our results demonstrate how different ontogenic stages change their investment in specialized phenolic compounds prioritizing different functions according to the needs and limitations of that stage.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Biological Science, Florida State University, Tallahassee, FL, USA; Department of Marine Ecology, IMEDEA (CSIC-UIB), Esporles, Spain.
| | - María J Ortega
- Department of Organic Chemistry, University of Cadiz, Puerto Real, Spain
| | - Fiona Tomas
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Esporles, Spain
| |
Collapse
|
6
|
Nakahata R, Naramoto M, Sato M, Mizunaga H. Multifunctions of fine root phenology in vegetative and reproductive growth in mature beech forest ecosystems. Ecosphere 2021. [DOI: 10.1002/ecs2.3788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryo Nakahata
- Center for Ecological Research Kyoto University Kyoto Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | | | - Masako Sato
- Graduate School of Agriculture Shizuoka University Shizuoka Japan
| | | |
Collapse
|
7
|
Kramer RD, Ishii HR, Carter KR, Miyazaki Y, Cavaleri MA, Araki MG, Azuma WA, Inoue Y, Hara C. Predicting effects of climate change on productivity and persistence of forest trees. Ecol Res 2020. [DOI: 10.1111/1440-1703.12127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Russell D. Kramer
- School of Environmental and Forest Science, College of the Environment University of Washington Seattle Washington USA
| | - H. Roaki Ishii
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kelsey R. Carter
- College of Forest Resources & Environmental Science Michigan Technological University Houghton Michigan USA
- Earth and Environmental Science Division Los Alamos National Laboratory Los Alamos New Mexico USA
| | - Yuko Miyazaki
- Graduate School of Environmental and Life Science Okayama University Okayama Japan
| | - Molly A. Cavaleri
- College of Forest Resources & Environmental Science Michigan Technological University Houghton Michigan USA
| | - Masatake G. Araki
- Department of Plant Ecology, Forestry and Forest Products Research Institute Tsukuba Japan
| | - Wakana A. Azuma
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Yuta Inoue
- Department of Plant Ecology, Forestry and Forest Products Research Institute Tsukuba Japan
| | - Chinatsu Hara
- Graduate School of Agricultural Science Kobe University Kobe Japan
| |
Collapse
|
8
|
Field transcriptome revealed a novel relationship between nitrate transport and flowering in Japanese beech. Sci Rep 2019; 9:4325. [PMID: 30867453 PMCID: PMC6416253 DOI: 10.1038/s41598-019-39608-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 11/09/2022] Open
Abstract
Recent advances in molecular and genetic studies about flowering time control have been increasingly available to elucidate the physiological mechanism underlying masting, the intermittent and synchronized production of a large amount of flowers and seeds in plant populations. To identify unexplored developmental and physiological processes associated with masting, genome-wide transcriptome analysis is a promising tool, but such analyses have yet to be performed. We established a field transcriptome using a typical masting species, Japanese beech (Fagus crenata Blume), over two years, and analyzed the data using a nonlinear time-series analysis called convergent cross mapping. Our field transcriptome was found to undergo numerous changes depending on the status of floral induction and season. An integrated approach of high-throughput transcriptomics and causal inference was successful at detecting novel causal regulatory relationships between nitrate transport and florigen synthesis/transport in a forest tree species. The synergistic activation of nitrate transport and floral transition could be adaptive to simultaneously satisfy floral transition at the appropriate timing and the nitrogen demand needed for flower formation.
Collapse
|
9
|
Fan K, Zhang Q, Liu M, Ma L, Shi Y, Ruan J. Metabolomic and transcriptional analyses reveal the mechanism of C, N allocation from source leaf to flower in tea plant (Camellia sinensis. L). JOURNAL OF PLANT PHYSIOLOGY 2019; 232:200-208. [PMID: 30537607 DOI: 10.1016/j.jplph.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 05/08/2023]
Abstract
Tea flowering in late autumn competes for a large amount of nitrogen and carbohydrates, potentially undermines the storage of these resources in vegetative organs, and negatively influences the subsequent spring tea yield and quality. The mechanism underlying the re-allocation N and carbohydrate from source leaf to flower in tea plant has not been clearly understood. In this study, 15N allocation, changes in metabolomics, and gene expression in flower buds, flowers, and adjacent leaves were characterized. Total N content of the adjacent leaves significantly decreased during flowering while such a decrease could be reversed by flower bud removal. Foliar-applied 15N in the adjacent leaves markedly decreased and was readily allocated to flowers. Metabolomic analysis revealed that most sugars and benzoic acid increased by more than two-fold whereas theanine, Gln, Arg, Asp, and Asn decreased when flower buds fully opened to become flowers. In this process, Gly, Pro, and cellobiose in the adjacent leaves increased considerably whereas sucrose, galactose, benzoic acid, and many fatty acids decreased. Removal of flower buds reversed or alleviated the above decreases and led to an increase of Asn in the leaves. The expression of genes associated with autophagy (ATG5, ATG9, ATG12, ATG18), sucrose transporters (SUT1, SUT2, SUT4), amino acids permease (AAP6, AAP7, AAP8), glutamine synthetase (GS1;1, GS1;2, GS1;3), and asparagine synthetase (ASN1, ASN2) was significantly up-regulated in leaves during the flowering process and was strongly modulated by the removal of flower buds. The overall results demonstrated that leaves are the ready source providing N and carbohydrates in flowering and a series of genes related to autophagy, protein degradation, turn-over of amino acids, and phloem loading for transport are involved.
Collapse
Affiliation(s)
- Kai Fan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 31008, China
| | - Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 31008, China
| | - Meiya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 31008, China
| | - Lifeng Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 31008, China
| | - Yuanzhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 31008, China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 31008, China.
| |
Collapse
|
10
|
Han Q, Kabeya D. Recent developments in understanding mast seeding in relation to dynamics of carbon and nitrogen resources in temperate trees. Ecol Res 2017. [DOI: 10.1007/s11284-017-1494-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|