1
|
Wang D, Coleman HD. The transcriptional regulation of a putative hemicellulose gene, PtrPARVUS2 in poplar. Sci Rep 2024; 14:12592. [PMID: 38824196 PMCID: PMC11144201 DOI: 10.1038/s41598-024-63408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
2
|
Zhang S, Chen H, Wang S, Du K, Song L, Xu T, Xia Y, Guo R, Kang X, Li Y. Positive regulation of the Eucommia rubber biosynthesis-related gene EuFPS1 by EuWRKY30 in Eucommia ulmoides. Int J Biol Macromol 2024; 268:131751. [PMID: 38657917 DOI: 10.1016/j.ijbiomac.2024.131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Eucommia rubber is a secondary metabolite from Eucommia ulmoides that has attracted much attention because of its unique properties and enormous potential for application. However, the transcriptional mechanism regulating its biosynthesis has not yet been determined. Farnesyl pyrophosphate synthase is a key enzyme in the Eucommia rubber biosynthesis. In this study, the promoter of EuFPS1 was used as bait, EuWRKY30 was screened from the cDNA library of EuFPS1 via a yeast one-hybrid system. EuWRKY30 belongs to the WRKY IIa subfamily and contains a WRKY domain and a C2H2 zinc finger motif, and the expressed protein is located in the nucleus. EuWRKY30 and EuFPS1 exhibited similar tissue expression patterns, and yeast one-hybrid and dual-luciferase experiments confirmed that EuWRKY30 directly binds to the W-box element in the EuFPS1 promoter and activates its expression. Moreover, the overexpression of EuWRKY30 significantly upregulated the expression level of EuFPS1, further increasing the density of the rubber particles and Eucommia rubber content. The results of this study indicated that EuWRKY30 positively regulates EuFPS1, which plays a critical role in the synthesis of Eucommia rubber, provided a basis for further analysis of the underlying transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruihua Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Li P, Xiao L, Du Q, Quan M, Song Y, He Y, Huang W, Xie J, Lv C, Wang D, Zhou J, Li L, Liu Q, El‐Kassaby YA, Zhang D. Genomic insights into selection for heterozygous alleles and woody traits in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2002-2018. [PMID: 37392407 PMCID: PMC10502748 DOI: 10.1111/pbi.14108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.
Collapse
Affiliation(s)
- Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuepeng Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuling He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weixiong Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and Food, Black MountainCanberraAustralian Capital TerritoryAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
4
|
Song C, Guo Y, Shen W, Yao X, Xu H, Zhao Y, Li R, Lin J. PagUNE12 encodes a basic helix-loop-helix transcription factor that regulates the development of secondary vascular tissue in poplar. PLANT PHYSIOLOGY 2023; 192:1046-1062. [PMID: 36932687 PMCID: PMC10231459 DOI: 10.1093/plphys/kiad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/01/2023]
Abstract
Secondary growth in woody plants generates new cells and tissues via the activity of the vascular cambium and drives the radial expansion of stems and roots. It is regulated by a series of endogenous factors, especially transcription factors. Here, we cloned the basic helix-loop-helix (bHLH) transcription factor gene UNFERTILIZED EMBRYO SAC12 (UNE12) from poplar (Populus alba × Populus glandulosa Uyeki) and used biochemical, molecular, and cytological assays to investigate the biological functions and regulatory mechanism of PagUNE12. PagUNE12 mainly localized in the nucleus and possessed transcriptional activation activity. It was widely expressed in vascular tissues, including primary phloem and xylem and secondary phloem and xylem. Poplar plants overexpressing PagUNE12 showed significantly reduced plant height, shorter internodes, and curled leaves compared with wild-type plants. Optical microscopy and transmission electron microscopy revealed that overexpressing PagUNE12 promoted secondary xylem development, with thicker secondary cell walls than wild-type poplar. Fourier transform infrared spectroscopy, confocal Raman microscopy, and 2D Heteronuclear Single Quantum Correlation analysis indicated that these plants also had increased lignin contents, with a lower relative abundance of syringyl lignin units and a higher relative abundance of guaiacyl lignin units. Therefore, overexpressing PagUNE12 promoted secondary xylem development and increased the lignin contents of secondary xylem in poplar, suggesting that this gene could be used to improve wood quality in the future.
Collapse
Affiliation(s)
- Chengwei Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Shen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Yao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Jing Y, Pei T, Li C, Wang D, Wang Q, Chen Y, Li P, Liu C, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 enhances apple cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006197 DOI: 10.1111/tpj.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Cold is one of the main abiotic stresses in temperate fruit crops, affecting the yield and fruit quality of apple in China and European countries. The plant receptor-like kinase FERONIA is widely reported to be involved in abiotic stresses. However, its function in apple cold resistance remains unknown. Modification of cell wall components and accumulation of soluble sugars and amino acids are important strategies by which plants cope with cold. In this study, expression of the apple FERONIA receptor-like kinase gene MdMRLK2 was rapidly induced by cold. Apple plants overexpressing MdMRLK2 (35S:MdMRLK2) showed enhanced cold resistance relative to the wild type. Under cold conditions, 35S:MdMRLK2 apple plants had higher amounts of water insoluble pectin, lignin, cellulose, and hemicellulose, which may have resulted from reduced activities of polygalacturonase, pectinate lyase, pectinesterase, and cellulase. More soluble sugars and free amino acids and less photosystem damage were also observed in 35S:MdMRLK2 apple plants. Intriguingly, MdMRLK2 interacted with the transcription factor MdMYBPA1 and promoted its binding to MdANS and MdUFGT promoters, leading to more anthocyanin biosynthesis, particularly under cold conditions. These findings complemented the function of apple FERONIA MdMRLK2 responding to cold resistance.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
6
|
Jing Y, Zhan M, Li C, Pei T, Wang Q, Li P, Ma F, Liu C. The apple FERONIA receptor-like kinase MdMRLK2 negatively regulates Valsa canker resistance by suppressing defence responses and hypersensitive reaction. MOLECULAR PLANT PATHOLOGY 2022; 23:1170-1186. [PMID: 35412700 PMCID: PMC9276949 DOI: 10.1111/mpp.13218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/05/2023]
Abstract
Valsa canker, caused by the fungus Valsa mali, is one of the most destructive diseases of apple trees in China and other East Asian countries. The plant receptor-like kinase FERONIA is involved in plant cell growth, development, and immunity. However, little is known about the function of FERONIA in apple defence against V. mali. In this study, we found that MdMRLK2 was highly induced by V. mali in twigs of V. mali-susceptible Malus mellana but not in those of the resistant species Malus yunnaensis. 35S:MdMRLK2 apple plants showed compromised resistance relative to wild-type (WT) plants. Further analyses indicated that 35S:MdMRLK2 apple plants had enhanced abscisic acid (ABA) levels and reduced salicylic acid (SA) levels relative to the WT on V. mali infection. MdMRLK2 overexpression also suppressed polyphenol accumulation and inhibited the activities of phenylalanine ammonia-lyase (PAL), β-1,3-glucanase (GLU), and chitinase (CHT) during V. mali infection. Moreover, MdMRLK2 interacted with MdHIR1, a hypersensitive-induced response protein, and suppressed the MdHIR1-mediated hypersensitive reaction (HR), probably by impairing MdHIR1 self-interaction. Collectively, these findings demonstrate that overexpression of MdMRLK2 compromises Valsa canker resistance, probably by (a) altering ABA and SA levels, (b) suppressing polyphenol accumulation, (c) inhibiting PAL, GLU, and CHT activities, and (d) blocking MdHIR1-mediated HR by disrupting MdHIR1 self-interaction.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
7
|
Liu H, Gao J, Sun J, Li S, Zhang B, Wang Z, Zhou C, Sulis DB, Wang JP, Chiang VL, Li W. Dimerization of PtrMYB074 and PtrWRKY19 mediates transcriptional activation of PtrbHLH186 for secondary xylem development in Populus trichocarpa. THE NEW PHYTOLOGIST 2022; 234:918-933. [PMID: 35152419 PMCID: PMC9314101 DOI: 10.1111/nph.18028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/02/2022] [Indexed: 05/28/2023]
Abstract
Wood formation is controlled by transcriptional regulatory networks (TRNs) involving regulatory homeostasis determined by combinations of transcription factor (TF)-DNA and TF-TF interactions. Functions of TF-TF interactions in wood formation are still in the early stages of identification. PtrMYB074 is a woody dicot-specific TF in a TRN for wood formation in Populus trichocarpa. Here, using yeast two-hybrid and bimolecular fluorescence complementation, we conducted a genome-wide screening for PtrMYB074 interactors and identified 54 PtrMYB074-TF pairs. Of these pairs, 53 are novel. We focused on the PtrMYB074-PtrWRKY19 pair, the most highly expressed and xylem-specific interactor, and its direct transregulatory target, PtrbHLH186, the xylem-specific one of the pair's only two direct TF target genes. Using transient and CRISPR-mediated transgenesis in P. trichocarpa coupled with chromatin immunoprecipitation and electrophoretic mobility shift assays, we demonstrated that PtrMYB074 is recruited by PtrWRKY19 and that the PtrMYB074-PtrWRKY19 dimers are required to transactive PtrbHLH186. Overexpressing PtrbHLH186 in P. trichocarpa resulted in retarded plant growth, increased guaiacyl lignin, a higher proportion of smaller stem vessels and strong drought-tolerant phenotypes. Knowledge of the PtrMYB074-PtrWRKY19-PtrbHLH186 regulation may help design genetic controls of optimal growth and wood formation to maximize beneficial wood properties while minimizing negative effects on growth.
Collapse
Affiliation(s)
- Huizi Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Jiatong Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Baofeng Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Zhuwen Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Daniel Barletta Sulis
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNC27695USA
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNC27695USA
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNC27695USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
8
|
Zhuang Y, Chen S, Lian W, Xu L, Wang D, Wang C, Meng J, Tang X, Xu H, Wang S, Du L, Zhang Y, Zhou G, Chai G. A High-Throughput Screening System for Populus Wood-Associated Transcription Factors and Its Application to Lignin Regulation. FRONTIERS IN PLANT SCIENCE 2022; 12:715809. [PMID: 35095939 PMCID: PMC8795814 DOI: 10.3389/fpls.2021.715809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Wood formation of trees is a complex and costly developmental process, whose regulatory network is involved in the protein-protein and protein-DNA interactions. To detect such interactions in wood development, we developed a high-throughput screening system with 517 Gal4-AD-wood-associated transcription factors (TFs) library from Populus alba × P. glandulosa cv "84K." This system can be used for screening the upstream regulators and interacting proteins of targets by mating-based yeast-one hybrid (Y1H) and yeast-two-hybrid (Y2H) method, respectively. Multiple regulatory modules of lignin biosynthesis were identified based on this Populus system. Five TFs interacted with the 500-bp promoter fragment of PHENYLALANINE AMMONIA-LYASE 2 (PAL2), the first rate-limiting enzyme gene in the lignin biosynthesis pathway, and 10 TFs interacted with PaMYB4/LTF1, a key regulator of lignin biosynthesis. Some of these interactions were further validated by EMSA and BiFC assays. The TF-PaPAL2 promoter interaction and TF-PaMYB4 interaction revealed a complex mechanism governing the regulation of lignin synthesis in wood cells. Our high-throughput Y1H/Y2H screening system may be an efficient tool for studying regulatory network of wood formation in tree species.
Collapse
Affiliation(s)
- Yamei Zhuang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Sihui Chen
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wenjun Lian
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Dian Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Congpeng Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xianfeng Tang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hua Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shumin Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lin Du
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Zhang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Gongke Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, China
| |
Collapse
|
9
|
Cao Y, Bi M, Yang P, Song M, He G, Wang J, Yang Y, Xu L, Ming J. Construction of yeast one-hybrid library and screening of transcription factors regulating LhMYBSPLATTER expression in Asiatic hybrid lilies (Lilium spp.). BMC PLANT BIOLOGY 2021; 21:563. [PMID: 34844560 PMCID: PMC8628396 DOI: 10.1186/s12870-021-03347-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/11/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Anthocyanins, which belong to flavonoids, are widely colored among red-purple pigments in the Asiatic hybrid lilies (Lilium spp.). Transcription factor (TF) LhMYBSPLATTER (formerly known as LhMYB12-Lat), identified as the major kernel protein, regulating the anthocyanin biosynthesis pathway in 'Tiny Padhye' of Tango Series cultivars, which the pigmentation density is high in the lower half of tepals and this patterning is of exceptional ornamental value. However, the research on mechanism of regulating the spatial and temporal expression differences of LhMYBSPLATTER, which belongs to the R2R3-MYB subfamily, is still not well established. To explore the molecular mechanism of directly related regulatory proteins of LhMYBSPLATTER in the anthocyanin pigmentation, the yeast one-hybrid (Y1H) cDNA library was constructed and characterized. RESULTS In this study, we describe a yeast one-hybrid library to screen transcription factors that regulate LhMYBSPLATTER gene expression in Lilium, with the library recombinant efficiency of over 98%. The lengths of inserted fragments ranged from 400 to 2000 bp, and the library capacity reached 1.6 × 106 CFU of cDNA insert, which is suitable to fulfill subsequent screening. Finally, seven prey proteins, including BTF3, MYB4, IAA6-like, ERF4, ARR1, ERF WIN1-like, and ERF061 were screened by the recombinant bait plasmid and verified by interaction with the LhMYBSPLATTER promoter. Among them, ERFs, AUX/IAA, and BTF3 may participate in the negative regulation of the anthocyanin biosynthesis pathway in Lilium. CONCLUSION A yeast one-hybrid library of lily was successfully constructed in the tepals for the first time. Seven candidate TFs of LhMYBSPLATTER were screened, which may provide a theoretical basis for the study of floral pigmentation.
Collapse
Affiliation(s)
- Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mengmeng Bi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yue Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
10
|
Li H, Dai X, Huang X, Xu M, Wang Q, Yan X, Sederoff RR, Li Q. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1906-1921. [PMID: 34347368 DOI: 10.1111/jipb.13159] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 05/24/2023]
Abstract
High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengxuan Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
11
|
Hodgson-Kratky K, Perlo V, Furtado A, Choudhary H, Gladden JM, Simmons BA, Botha F, Henry RJ. Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. PLANT MOLECULAR BIOLOGY 2021; 106:173-192. [PMID: 33738678 DOI: 10.1007/s11103-021-01136-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
A transcriptome analysis reveals the transcripts and alleles differentially expressed in sugarcane genotypes with contrasting lignin composition. Sugarcane bagasse is a highly abundant resource that may be used as a feedstock for the production of biofuels and bioproducts in order to meet increasing demands for renewable replacements for fossil carbon. However, lignin imparts rigidity to the cell wall that impedes the efficient breakdown of the biomass into fermentable sugars. Altering the ratio of the lignin units, syringyl (S) and guaiacyl (G), which comprise the native lignin polymer in sugarcane, may facilitate the processing of bagasse. This study aimed to identify genes and markers associated with S/G ratio in order to accelerate the development of sugarcane bioenergy varieties with modified lignin composition. The transcriptome sequences of 12 sugarcane genotypes that contrasted for S/G ratio were compared and there were 2019 transcripts identified as differentially expressed (DE) between the high and low S/G ratio groups. These included transcripts encoding possible monolignol biosynthetic pathway enzymes, transporters, dirigent proteins and transcriptional and post-translational regulators. Furthermore, the frequencies of single nucleotide polymorphisms (SNPs) were compared between the low and high S/G ratio groups to identify specific alleles expressed with the phenotype. There were 2063 SNP loci across 787 unique transcripts that showed group-specific expression. Overall, the DE transcripts and SNP alleles identified in this study may be valuable for breeding sugarcane varieties with altered S/G ratio that may provide desirable bioenergy traits.
Collapse
Affiliation(s)
- K Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - V Perlo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Choudhary
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - J M Gladden
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Balmant KM, Noble JD, C Alves F, Dervinis C, Conde D, Schmidt HW, Vazquez AI, Barbazuk WB, Campos GDL, Resende MFR, Kirst M. Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in Populus deltoides. Genome Res 2020; 30:1131-1143. [PMID: 32817237 PMCID: PMC7462072 DOI: 10.1101/gr.261438.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/13/2020] [Indexed: 02/01/2023]
Abstract
Despite the growing resources and tools for high-throughput characterization and analysis of genomic information, the discovery of the genetic elements that regulate complex traits remains a challenge. Systems genetics is an emerging field that aims to understand the flow of biological information that underlies complex traits from genotype to phenotype. In this study, we used a systems genetics approach to identify and evaluate regulators of the lignin biosynthesis pathway in Populus deltoides by combining genome, transcriptome, and phenotype data from a population of 268 unrelated individuals of P. deltoides The discovery of lignin regulators began with the quantitative genetic analysis of the xylem transcriptome and resulted in the detection of 6706 and 4628 significant local- and distant-eQTL associations, respectively. Among the locally regulated genes, we identified the R2R3-MYB transcription factor MYB125 (Potri.003G114100) as a putative trans-regulator of the majority of genes in the lignin biosynthesis pathway. The expression of MYB125 in a diverse population positively correlated with lignin content. Furthermore, overexpression of MYB125 in transgenic poplar resulted in increased lignin content, as well as altered expression of genes in the lignin biosynthesis pathway. Altogether, our findings indicate that MYB125 is involved in the control of a transcriptional coexpression network of lignin biosynthesis genes during secondary cell wall formation in P. deltoides.
Collapse
Affiliation(s)
- Kelly M Balmant
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Jerald D Noble
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
| | - Filipe C Alves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Daniel Conde
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Henry W Schmidt
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
| | - William B Barbazuk
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
- Statistics Department, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marcio F R Resende
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
- Horticulture Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
13
|
Xu Y, Zhou J, Liu Q, Li K, Zhou Y. Construction and characterization of a high-quality cDNA library of Cymbidium faberi suitable for yeast one- and two-hybrid assays. BMC Biotechnol 2020; 20:4. [PMID: 31948410 PMCID: PMC6966867 DOI: 10.1186/s12896-020-0599-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/03/2020] [Indexed: 11/29/2022] Open
Abstract
Background Cymbidium faberi is one of the oldest cultivars of oriental orchids, with an elegant flower fragrance. In order to investigate the molecular mechanism and the functions of related proteins in the methyl jasmonate (MeJA) signaling pathway, one of the main components of flower fragrance in C. faberi, yeast one- and two-hybrid three-frame cDNA libraries were constructed. Results In this study, a modified cDNA library used for yeast one- and two-hybrid screening was successfully constructed, with a recombinant efficiency of 95%. The lengths of inserted fragments ranged from 750~3000 bp, and the library capacity reached 6 × 109 CFU/ μg of cDNA insert, which was suitable for the requirements of subsequent screening. Finally, a homologous protein related with pathogenesis was screened out by the bait vector of CfbHLH36, which may participate in the MeJA signaling pathway. Conclusion The yeast one- and two-hybrid library of C. faberi provides large amounts of useful information for the functional genomics research in C. faberi, and this method could also be applied to other plants to screen DNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
- Yanqin Xu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Junjiang Zhou
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Qingqing Liu
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Kunpeng Li
- Department of Protein Services, Wuhan Genecreate Bioengineering Co., Ltd, Wuhan, 430206, People's Republic of China
| | - Yin Zhou
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China. .,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.
| |
Collapse
|
14
|
Behr M, Guerriero G, Grima-Pettenati J, Baucher M. A Molecular Blueprint of Lignin Repression. TRENDS IN PLANT SCIENCE 2019; 24:1052-1064. [PMID: 31371222 DOI: 10.1016/j.tplants.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Although lignin is essential to ensure the correct growth and development of land plants, it may be an obstacle to the production of lignocellulosics-based biofuels, and reduces the nutritional quality of crops used for human consumption or livestock feed. The need to tailor the lignocellulosic biomass for more efficient biofuel production or for improved plant digestibility has fostered considerable advances in our understanding of the lignin biosynthetic pathway and its regulation. Most of the described regulators are transcriptional activators of lignin biosynthesis, but considerably less attention has been devoted to the repressors of this pathway. We provide a comprehensive overview of the molecular factors that negatively impact on the lignification process at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique (CNRS) Université Paul Sabatier Toulouse III (UPS), 31326 Castanet-Tolosan, France
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
15
|
Yeh CS, Wang Z, Miao F, Ma H, Kao CT, Hsu TS, Yu JH, Hung ET, Lin CC, Kuan CY, Tsai NC, Zhou C, Qu GZ, Jiang J, Liu G, Wang JP, Li W, Chiang VL, Chang TH, Lin YCJ. A novel synthetic-genetic-array-based yeast one-hybrid system for high discovery rate and short processing time. Genome Res 2019; 29:1343-1351. [PMID: 31186303 PMCID: PMC6673709 DOI: 10.1101/gr.245951.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Eukaryotic gene expression is often tightly regulated by interactions between transcription factors (TFs) and their DNA cis targets. Yeast one-hybrid (Y1H) is one of the most extensively used methods to discover these interactions. We developed a high-throughput meiosis-directed yeast one-hybrid system using the Magic Markers of the synthetic genetic array analysis. The system has a transcription factor–DNA interaction discovery rate twice as high as the conventional diploid-mating approach and a processing time nearly one-tenth of the haploid-transformation method. The system also offers the highest accuracy in identifying TF–DNA interactions that can be authenticated in vivo by chromatin immunoprecipitation. With these unique features, this meiosis-directed Y1H system is particularly suited for constructing novel and comprehensive genome-scale gene regulatory networks for various organisms.
Collapse
Affiliation(s)
- Chung-Shu Yeh
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Fang Miao
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chung-Ting Kao
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Shu Hsu
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jhong-He Yu
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Er-Tsi Hung
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Chang Lin
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yu Kuan
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ni-Chiao Tsai
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
16
|
Hellmann E, Ko D, Ruonala R, Helariutta Y. Plant Vascular Tissues-Connecting Tissue Comes in All Shapes. PLANTS (BASEL, SWITZERLAND) 2018; 7:E109. [PMID: 30551673 PMCID: PMC6313914 DOI: 10.3390/plants7040109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022]
Abstract
For centuries, humans have grown and used structures based on vascular tissues in plants. One could imagine that life would have developed differently without wood as a resource for building material, paper, heating energy, or fuel and without edible tubers as a food source. In this review, we will summarise the status of research on Arabidopsis thaliana vascular development and subsequently focus on how this knowledge has been applied and expanded in research on the wood of trees and storage organs of crop plants. We will conclude with an outlook on interesting open questions and exciting new research opportunities in this growing and important field.
Collapse
Affiliation(s)
- Eva Hellmann
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| | - Donghwi Ko
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| | - Raili Ruonala
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
17
|
Ohtani M, Demura T. The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model. Curr Opin Biotechnol 2018; 56:82-87. [PMID: 30390602 DOI: 10.1016/j.copbio.2018.10.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 01/15/2023]
Abstract
Lignin is an important secondary metabolite in plants. The biosynthesis of lignin is initiated by the transcriptional upregulation of genes encoding enzymes involved in monolignol biosynthesis and lignin polymerization. Based on studies of xylem differentiation over the last two decades, the NAC-MYB-based gene regulatory network (NAC-MYB-GRN) model is widely considered to underpin developmental lignin biosynthesis. We are now standing on the threshold of a new direction in transcriptional regulation research; the search for novel molecular hubs connecting developmental/environmental signals in lignin biosynthesis. Emerging genome-wide 'omics' technologies are a promising approach for understanding such hubs. Elucidating these molecular hubs may enable us to control lignification in harmony with plant development and environmental adaptation.
Collapse
Affiliation(s)
- Misato Ohtani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
18
|
Tsai CJ, Harding SA, Cooke JEK. Branching out: a new era of investigating physiological processes in forest trees using genomic tools. TREE PHYSIOLOGY 2018; 38:303-310. [PMID: 29506180 DOI: 10.1093/treephys/tpy026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| |
Collapse
|