1
|
Pearson AL, Tribby C, Brown CD, Yang JA, Pfeiffer K, Jankowska MM. Systematic review of best practices for GPS data usage, processing, and linkage in health, exposure science and environmental context research. BMJ Open 2024; 14:e077036. [PMID: 38307539 PMCID: PMC10836389 DOI: 10.1136/bmjopen-2023-077036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Global Positioning System (GPS) technology is increasingly used in health research to capture individual mobility and contextual and environmental exposures. However, the tools, techniques and decisions for using GPS data vary from study to study, making comparisons and reproducibility challenging. OBJECTIVES The objectives of this systematic review were to (1) identify best practices for GPS data collection and processing; (2) quantify reporting of best practices in published studies; and (3) discuss examples found in reviewed manuscripts that future researchers may employ for reporting GPS data usage, processing and linkage of GPS data in health studies. DESIGN A systematic review. DATA SOURCES Electronic databases searched (24 October 2023) were PubMed, Scopus and Web of Science (PROSPERO ID: CRD42022322166). ELIGIBILITY CRITERIA Included peer-reviewed studies published in English met at least one of the criteria: (1) protocols involving GPS for exposure/context and human health research purposes and containing empirical data; (2) linkage of GPS data to other data intended for research on contextual influences on health; (3) associations between GPS-measured mobility or exposures and health; (4) derived variable methods using GPS data in health research; or (5) comparison of GPS tracking with other methods (eg, travel diary). DATA EXTRACTION AND SYNTHESIS We examined 157 manuscripts for reporting of best practices including wear time, sampling frequency, data validity, noise/signal loss and data linkage to assess risk of bias. RESULTS We found that 6% of the studies did not disclose the GPS device model used, only 12.1% reported the per cent of GPS data lost by signal loss, only 15.7% reported the per cent of GPS data considered to be noise and only 68.2% reported the inclusion criteria for their data. CONCLUSIONS Our recommendations for reporting on GPS usage, processing and linkage may be transferrable to other geospatial devices, with the hope of promoting transparency and reproducibility in this research. PROSPERO REGISTRATION NUMBER CRD42022322166.
Collapse
Affiliation(s)
- Amber L Pearson
- CS Mott Department of Public Health, Michigan State University, Flint, MI, USA
| | - Calvin Tribby
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Catherine D Brown
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Jiue-An Yang
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Karin Pfeiffer
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
2
|
Reitzug F, Ledien J, Chami GF. Associations of water contact frequency, duration, and activities with schistosome infection risk: A systematic review and meta-analysis. PLoS Negl Trop Dis 2023; 17:e0011377. [PMID: 37315020 DOI: 10.1371/journal.pntd.0011377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Schistosomiasis is a water-borne parasitic disease which affects over 230 million people globally. The relationship between contact with open freshwater bodies and the likelihood of schistosome infection remains poorly quantified despite its importance for understanding transmission and parametrising transmission models. METHODS We conducted a systematic review to estimate the average effect of water contact duration, frequency, and activities on schistosome infection likelihood. We searched Embase, MEDLINE (including PubMed), Global Health, Global Index Medicus, Web of Science, and the Cochrane Central Register of Controlled Trials from inception until May 13, 2022. Observational and interventional studies reporting odds ratios (OR), hazard ratios (HR), or sufficient information to reconstruct effect sizes on individual-level associations between water contact and infection with any Schistosoma species were eligible for inclusion. Random-effects meta-analysis with inverse variance weighting was used to calculate pooled ORs and 95% confidence intervals (CIs). RESULTS We screened 1,411 studies and included 101 studies which represented 192,691 participants across Africa, Asia, and South America. Included studies mostly reported on water contact activities (69%; 70/101) and having any water contact (33%; 33/101). Ninety-six percent of studies (97/101) used surveys to measure exposure. A meta-analysis of 33 studies showed that individuals with water contact were 3.14 times more likely to be infected (OR 3.14; 95% CI: 2.08-4.75) when compared to individuals with no water contact. Subgroup analyses showed that the positive association of water contact with infection was significantly weaker in children compared to studies which included adults and children (OR 1.67; 95% CI: 1.04-2.69 vs. OR 4.24; 95% CI: 2.59-6.97). An association of water contact with infection was only found in communities with ≥10% schistosome prevalence. Overall heterogeneity was substantial (I2 = 93%) and remained high across all subgroups, except in direct observation studies (I2 range = 44%-98%). We did not find that occupational water contact such as fishing and agriculture (OR 2.57; 95% CI: 1.89-3.51) conferred a significantly higher risk of schistosome infection compared to recreational water contact (OR 2.13; 95% CI: 1.75-2.60) or domestic water contact (OR 1.91; 95% CI: 1.47-2.48). Higher duration or frequency of water contact did not significantly modify infection likelihood. Study quality across analyses was largely moderate or poor. CONCLUSIONS Any current water contact was robustly associated with schistosome infection status, and this relationship held across adults and children, and schistosomiasis-endemic areas with prevalence greater than 10%. Substantial gaps remain in published studies for understanding interactions of water contact with age and gender, and the influence of these interactions for infection likelihood. As such, more empirical studies are needed to accurately parametrise exposure in transmission models. Our results imply the need for population-wide treatment and prevention strategies in endemic settings as exposure within these communities was not confined to currently prioritised high-risk groups such as fishing populations.
Collapse
Affiliation(s)
- Fabian Reitzug
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Julia Ledien
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Goylette F Chami
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Lund AJ, Sokolow SH, Jones IJ, Wood CL, Ali S, Chamberlin A, Sy AB, Sam MM, Jouanard N, Schacht AM, Senghor S, Fall A, Ndione R, Riveau G, De Leo GA, López-Carr D. Exposure, hazard, and vulnerability all contribute to Schistosoma haematobium re-infection in northern Senegal. PLoS Negl Trop Dis 2021; 15:e0009806. [PMID: 34610025 PMCID: PMC8525765 DOI: 10.1371/journal.pntd.0009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 10/19/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. Methodology/Principal findings In 13 villages along the Senegal River, we collected parasitological data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Ʃwi = 0.95) was the most important component of S. haematobium presence, followed by vulnerability (Ʃwi = 0.91). Exposure (Ʃwi = 1.00) was the most important component of S. haematobium intensity, followed by hazard (Ʃwi = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59–3.86, depending on the category; all 95% CIs above 1) Conclusions/Significance Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S. haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration. While the impacts of natural hazards tend to be described in terms of social determinants such as exposure and vulnerability, the risk for infectious disease is often expressed in terms of environmental determinants without fully considering the socio-ecological processes that put people in contact with infective agents of disease. In the case of schistosomiasis, risk is determined by human interactions with freshwater environments where schistosome parasites circulate between people and aquatic snails. In this study, we quantified the relative contributions of exposure, hazard, and vulnerability to schistosome re-infection among schoolchildren in an endemic region of northern Senegal. We find that hazard and vulnerability influence whether a child becomes infected, while exposure and hazard influence the burden of worms once infection is acquired. Increasing numbers of worms is known to be positively associated with increasing severity of disease. Our findings underscore the importance of evaluating social and environmental determinants of disease simultaneously; omitting measures of exposure, hazard or vulnerability may limit our understanding of risk.
Collapse
Affiliation(s)
- Andrea J. Lund
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Susanne H. Sokolow
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Isabel J. Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sofia Ali
- Stanford University, Stanford, California, United States of America
| | - Andrew Chamberlin
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Alioune Badara Sy
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
| | - M. Moustapha Sam
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
| | - Nicolas Jouanard
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
- Station d’Innovation Aquacole, Saint Louis, Sénégal
| | - Anne-Marie Schacht
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Simon Senghor
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
| | - Assane Fall
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
| | - Raphael Ndione
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
| | - Gilles Riveau
- Centre de Recherche Biomédicale–Espoir Pour La Sante, Saint Louis, Sénégal
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Giulio A. De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - David López-Carr
- Department of Geography, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
4
|
Kalinda C, Mindu T, Chimbari MJ. A systematic review and meta-analysis quantifying schistosomiasis infection burden in pre-school aged children (PreSAC) in sub-Saharan Africa for the period 2000-2020. PLoS One 2020; 15:e0244695. [PMID: 33373405 PMCID: PMC7771669 DOI: 10.1371/journal.pone.0244695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Following the adoption of the World Health Assembly Resolution WHA 65.21 and Neglected Tropical Diseases road map 2021-2030, schistosomiasis control programmes have shifted from morbidity control to disease elimination. However, several gaps continue to be observed in the implementation of control programmes with certain age groups omitted from these campaigns increasing health inequalities and risks of reinfections to previously treated groups. We used the Inverse Variance Heterogeneity (IVhet) model to estimate the prevalence of schistosomiasis infection among preschool-aged children. METHODS We did a systematic review of peer-reviewed literature on schistosomiasis in sub-Saharan Africa for the period January 1, 2000 to November 30, 2020. Quantitative data for cases of schistosomiasis infection were extracted, including country and region where the studies were done, year of publication and specific schistosome species observed. The IVhet model was used to estimate the pooled prevalence estimate (PPE), the heterogeneity and publication bias. RESULTS We screened 2601 articles to obtain 47 eligible studies containing quantitative data on preschool-aged children. Of the selected studies, 44.7% (n = 22) were from East Africa while the least number of studies obtained (2.1%, n = 1) was from Central Africa. 21712 subjects were screened for infection due to Schistosoma spp; 13924 for S. mansoni and 7788 for S. haematobium. The PPE for schistosomiasis among PreSAC was 19% (95% CI: 11-28). Infection due to S. mansoni (IVhet PPE: 22% (95% CI: 9-36) was higher than that due to S. haematobium (15%; 95% CI: 6-25). A Luis Furuya-Kanamori index of 1.83 indicated a lack of publication bias. High level of heterogeneity was observed (I2 > 90%) and this could not be reduced through subgroup analysis. CONCLUSION Schistosomiasis infection among pre-school aged children 6 years old and below is high. This indicates the importance of including this age group in treatment programmes to reduce infection prevalence and long-term morbidities associated with prolonged schistosome infection.
Collapse
Affiliation(s)
- Chester Kalinda
- University of Namibia, Katima Mulilo, Namibia
- Department of Public Health, College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Tafadzwa Mindu
- Department of Public Health, College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Moses John Chimbari
- Department of Public Health, College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Eyre MT, Stanton MC, Macklin G, Bartoníček Z, O'Halloran L, Eloundou Ombede DR, Chuinteu GD, Stewart M, LaCourse EJ, Tchuem Tchuenté LA, Stothard JR. Piloting an integrated approach for estimation of environmental risk of Schistosoma haematobium infections in pre-school-aged children and their mothers at Barombi Kotto, Cameroon. Acta Trop 2020; 212:105646. [PMID: 32721393 DOI: 10.1016/j.actatropica.2020.105646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022]
Abstract
Within schistosomiasis control, assessing environmental risk of currently non-treated demographic groups e.g. pre-school-aged children (PSAC) and their mothers is important. We conducted a pilot micro-epidemiological assessment at the crater lake of Barombi Kotto, Cameroon with GPS tracking and infection data from 12 PSAC-mother pairs (n = 24) overlaid against environmental sampling inclusive of snail, parasite and water-use information. Several high-risk locations or 'hotspots' with elevated water contact, increased intermediate snail host densities and detectable schistosome environmental DNA (eDNA) were identified. Exposure between PSAC and mother pairs was temporally and spatially associated, suggesting interventions which can benefit both groups simultaneously might be feasible. When attempting to interrupt parasite transmission in future, overlaid maps of snail, parasite and water contact data can guide fine-scale spatial targeting of environmental interventions.
Collapse
Affiliation(s)
- M T Eyre
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom; Centre for Health Informatics, Computing, and Statistics, Lancaster University Medical School, Lancaster LA1 4YW United Kingdom
| | - M C Stanton
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom; Centre for Health Informatics, Computing, and Statistics, Lancaster University Medical School, Lancaster LA1 4YW United Kingdom
| | - G Macklin
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom
| | - Z Bartoníček
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom
| | - L O'Halloran
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom
| | | | - G D Chuinteu
- Centre for Schistosomiasis & Parasitology, P.O. Box 7244 Yaoundé, Cameroon
| | - M Stewart
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom
| | - E J LaCourse
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom
| | | | - J R Stothard
- Liverpool School of Tropical Medicine, Liverpool L3 5QA United Kingdom.
| |
Collapse
|