1
|
Wu Y, Zhao Y, Zhang X, Wei T, Peng Q, Wang J, Liu Z, Zhu Y, Shao X. Diverse amdoparvoviruses infection of farmed Asian badgers (Meles meles). Arch Virol 2024; 169:139. [PMID: 38849620 DOI: 10.1007/s00705-024-06073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/28/2024] [Indexed: 06/09/2024]
Abstract
Amdoparvoviruses infect various carnivores, including mustelids, canids, skunks, and felids. Aleutian mink disease virus (AMDV) belongs to the prototypical species Amdoparvovirus carnivoran1. Here, we identified a novel amdoparvovirus in farmed Asian badgers (Meles meles), and we named this virus "Meles meles amdoparvovirus" (MMADV). A total of 146 clinical samples were collected from 134 individual badgers, and 30.6% (41/134) of the sampled badgers tested positive for amdoparvovirus by PCR. Viral DNA was detected in feces, blood, spleen, liver, lung, and adipose tissue from these animals. Viral sequences from eight samples were determined, five of which represented nearly full-length genome sequences (4,237-4,265 nt). Six serum samples tested positive by PCR, CIEP, and IAT, four of which had high antibody titers (> 512) against AMDV-G. Twenty-six of the 41 amdoparvovirus-positive badgers showed signs of illness, and necropsy revealed lesions in their organs. Sequence comparisons and phylogenetic analysis of the viral NS1 and VP2 genes of these badger amdoparvoviruses showed that their NS1 proteins shared 62.6%-88.8% sequence identity with known amdoparvoviruses, and they clustered phylogenetically into two related clades. The VP2 proteins shared 76.6%-97.2% identity and clustered into two clades, one of which included raccoon dog and arctic fox amdoparvovirus (RFAV), and the other of which did not include other known amdoparvoviruses. According to the NS1-protein-based criterion for parvovirus species demarcation, the MMADV isolate from farm YS should be classified as a member of a new species of the genus Amdoparvovirus. In summary, we have discovered a novel MMADV and other badger amdoparvoviruses that naturally infect Asian badgers and are possibly pathogenic in badgers.
Collapse
Affiliation(s)
- Yanhong Wu
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China
| | - Yongqiang Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Xiuting Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Tao Wei
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Qianwen Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Jianke Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Zongyue Liu
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Yanzhu Zhu
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China
| | - Xiqun Shao
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China.
| |
Collapse
|
2
|
Gola C, Kvapil P, Kuhar U, Diaz-Delgado J, Alex CE, Shotton J, Smith SJ, Fingerhood S. Fatal cerebrovascular accident in a captive red panda (Ailurus fulgens fulgens) with concurrent amdoparvovirus infection. J Comp Pathol 2023; 205:11-16. [PMID: 37506667 DOI: 10.1016/j.jcpa.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
We report the pathological and molecular findings in an adult male Himalayan red panda (Ailurus fulgens fulgens) whose death was attributed to parenchymal brain haemorrhage (PBH) of the thalamus. Post-mortem examination revealed severe, acute PBH and intraventricular haemorrhage with major involvement of the thalamus, as well as scattered chronic microinfarctions. Vascular disease in the brain and other organs was suggestive of systemic hypertension. Histological lesions included arteriolar hyalinosis and varying degrees of arteriosclerosis, arterial tunica media hypertrophy and hyperplasia and infiltration of arterial walls by lipid-laden macrophages. Other relevant findings included marked myocardial fibrosis, lymphoplasmacytic tubulointerstitial nephritis, lymphoplasmacytic meningoencephalitis and chronic mitral valve degeneration. The changes in the cerebral vasculature were consistent with hypertensive encephalopathy and a cerebrovascular accident, specifically PBH, which has not been previously reported in this species. Additionally, polymerase chain reaction analysis for red panda amdoparvovirus (RPAV) was positive in the brain and kidneys. Preceded by hypertensive vascular changes and brain microinfarctions, sudden death in this animal likely resulted from fatal PBH with intraventricular haemorrhage. The clinicopathological role of RPAV infection is unknown in this case, although its contribution to the chronic renal disease is considered possible in the context of our current understanding of RPAV-associated pathology.
Collapse
Affiliation(s)
- Cecilia Gola
- Veterinary Pathology Centre, University of Surrey, Francis Crick Road, Guildford GU2 7AQ, Surrey, UK
| | - Pavel Kvapil
- Veterinary Department, Ljubljana Zoo, Večna Pot 70, 1000 Ljubljana, Slovenia
| | - Urska Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Josué Diaz-Delgado
- Veterinary Pathology Centre, University of Surrey, Francis Crick Road, Guildford GU2 7AQ, Surrey, UK
| | - Charles E Alex
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Justine Shotton
- Veterinary Department, Marwell Wildlife Zoological Park, Thompson's Lane, Colden Common, Winchester S021 1HJ, Hampshire, UK
| | - Sarah J Smith
- Veterinary Department, Marwell Wildlife Zoological Park, Thompson's Lane, Colden Common, Winchester S021 1HJ, Hampshire, UK
| | - Sai Fingerhood
- Veterinary Pathology Centre, University of Surrey, Francis Crick Road, Guildford GU2 7AQ, Surrey, UK.
| |
Collapse
|
3
|
Alex CE, Watson KD, Schlesinger M, Jackson K, Mete A, Chu P, Pesavento PA. Amdoparvovirus-associated disease in striped skunks ( Mephitis mephitis). Vet Pathol 2023; 60:438-442. [PMID: 37199486 PMCID: PMC11245168 DOI: 10.1177/03009858231173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Disease caused by the archetypical amdoparvovirus (APV), Aleutian mink disease virus (AMDV), has been well studied, but APV infections in other carnivores are poorly understood. Skunk amdoparvovirus (SKAV), one of a handful of newly discovered APVs, is apparently species-specific in striped skunks (Mephitis mephitis) and has a high prevalence across North America. We have evaluated the infection status and viral tissue distribution in a cohort of 26 free-ranging California skunks from a single rehabilitation facility who were euthanized due to poor prognosis for recovery from neurologic disease. SKAV was detected in the majority of this cohort, and virus was associated with a spectrum of lesions including tubulointerstitial nephritis, meningoencephalitis, myocarditis, and arteritis. Affected tissue and patterns of inflammation were partially overlapping with those of AMDV infection but were notably distinct in the kidney.
Collapse
Affiliation(s)
| | | | | | | | - Asli Mete
- University of California, Davis, Davis, CA
| | - Peter Chu
- University of California, Davis, Davis, CA
| | | |
Collapse
|
4
|
Kaiser FK, de le Roi M, Jo WK, Gerhauser I, Molnár V, Osterhaus ADME, Baumgärtner W, Ludlow M. First Report of Skunk Amdoparvovirus (Species Carnivore amdoparvovirus 4) in Europe in a Captive Striped Skunk ( Mephitis mephitis). Viruses 2023; 15:v15051087. [PMID: 37243173 DOI: 10.3390/v15051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Skunk amdoparvovirus (Carnivore amdoparvovirus 4, SKAV) is closely related to Aleutian mink disease virus (AMDV) and circulates primarily in striped skunks (Mephitis mephitis) in North America. SKAV poses a threat to mustelid species due to reported isolated infections of captive American mink (Neovison vison) in British Columbia, Canada. We detected SKAV in a captive striped skunk in a German zoo by metagenomic sequencing. The pathological findings are dominated by lymphoplasmacellular inflammation and reveal similarities to its relative Carnivore amdoparvovirus 1, the causative agent of Aleutian mink disease. Phylogenetic analysis of the whole genome demonstrated 94.80% nucleotide sequence identity to a sequence from Ontario, Canada. This study is the first case description of a SKAV infection outside of North America.
Collapse
Affiliation(s)
- Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Wendy K Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
5
|
Lakshmanan R, Mietzsch M, Jimenez Ybargollin A, Chipman P, Fu X, Qiu J, Söderlund-Venermo M, McKenna R. Capsid Structure of Aleutian Mink Disease Virus and Human Parvovirus 4: New Faces in the Parvovirus Family Portrait. Viruses 2022; 14:2219. [PMID: 36298773 PMCID: PMC9612331 DOI: 10.3390/v14102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Parvoviruses are small, single-stranded DNA viruses with non-enveloped capsids. Determining the capsid structures provides a framework for annotating regions important to the viral life cycle. Aleutian mink disease virus (AMDV), a pathogen in minks, and human parvovirus 4 (PARV4), infecting humans, are parvoviruses belonging to the genera Amdoparvovirus and Tetraparvovirus, respectively. While Aleutian mink disease caused by AMDV is a major threat to mink farming, no clear clinical manifestations have been established following infection with PARV4 in humans. Here, the capsid structures of AMDV and PARV4 were determined via cryo-electron microscopy at 2.37 and 3.12 Å resolutions, respectively. Despite low amino acid sequence identities (10-30%) both viruses share the icosahedral nature of parvovirus capsids, with 60 viral proteins (VPs) assembling the capsid via two-, three-, and five-fold symmetry VP-related interactions, but display major structural variabilities in the surface loops when the capsid structures are superposed onto other parvoviruses. The capsid structures of AMDV and PARV4 will add to current knowledge of the structural platform for parvoviruses and permit future functional annotation of these viruses, which will help in understanding their infection mechanisms at a molecular level for the development of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renuk Lakshmanan
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Alberto Jimenez Ybargollin
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Xiaofeng Fu
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|