1
|
Páez DJ, Kurath G, Powers RL, Naish KA, Purcell MK. Local and systemic replicative fitness for viruses in specialist, generalist, and non-specialist interactions with salmonid hosts. J Gen Virol 2024; 105. [PMID: 38180085 DOI: 10.1099/jgv.0.001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.
Collapse
Affiliation(s)
- David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Rachel L Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
- U.S. Geological Survey, Forest Rangeland Ecosystem Science Center, Corvallis, OR 97330, USA
| |
Collapse
|
2
|
Mattheiss JP, Breyta R, Kurath G, LaDeau SL, Páez DJ, Ferguson PFB. Coproduction and modeling spatial contact networks prevent bias about infectious hematopoietic necrosis virus transmission for Snake River Basin salmonids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117415. [PMID: 36780814 DOI: 10.1016/j.jenvman.2023.117415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Much remains unknown about variation in pathogen transmission across the geographic range of a free-ranging fish or animal species and about the influence of movement (associated with husbandry practices or animal behavior) on pathogen transmission. Salmonid hatcheries are an ideal system in which to study these processes. Salmonid hatcheries are managed for endangered species recovery, supplementation of threatened or at-risk fish stocks, support of fisheries, and ecosystem stability. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus of significant concern to salmon aquaculture. Landscape IHNV transmission dynamics previously had been estimated only for salmonid hatcheries in the Lower Columbia River Basin (LCRB). The objectives of this study were to estimate IHNV transmission dynamics in a unique geographic region, the Snake River Basin (SRB), and to quantitatively estimate the effect of model coproduction on inference because previous assessments of coproduction have been qualitative. In contrast to the LCRB, the SRB has hatchery complexes consisting of a main hatchery and ≥1 satellite facility. Knowledge about hatchery complexes was held by a subset of project researchers but would not have been available to project modelers without coproduction. Project modelers generated and tested multiple versions of Bayesian susceptible-exposedinfected models to realistically represent the SRB and estimate the effect of coproduction. Models estimated the frequency of transmission routes, route-specific infection probabilities, and infection probabilities for combinations of salmonid hosts and IHNV lineages. Model results indicated that in the SRB, avoiding exposure to IHNV-positive adult salmonids is the most important action to prevent juvenile infections. Migrating adult salmonids exposed juvenile cohort-sites most frequently, and the infection probability was greatest following exposure to migrating adults. Without coproduction, the frequency of exposure by migrating adults would have been overestimated by 70 cohort-sites, and the infection probability following exposure to migrating adults would have been underestimated by∼0.09. The coproduced model had less uncertainty in the infection probability if no transmission route could be identified (Bayesian credible interval (BCI) width = 0.12) compared to the model without coproduction (BCI width = 0.34). Evidence for virus lineage MD specialization on steelhead and rainbow trout (both Oncorhynchus mykiss) was apparent without model coproduction. In the SRB, we found a greater probability of virus lineage UC infection in Chinook salmon (Oncorhynchus tshawytscha) compared to in O. mykiss, whereas in the LCRB, UC more clearly exhibited a generalist approach. Coproduction influenced estimates that depended on transmission routes, which operated differently at main hatcheries and satellite sites within hatchery complexes. Hatchery complexes are found outside of the SRB and are not specific to salmonid hatcheries alone. There is great potential for coproduction and modeling spatial contact networks to advance understanding about infectious disease transmission in complex production systems and surrounding free-ranging animal populations.
Collapse
Affiliation(s)
- Jeffrey P Mattheiss
- 1325 Science and Engineering Complex, 300 Hackberry Lane, Tuscaloosa, AL 35487 University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Shannon L LaDeau
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY, 12545, USA.
| | - David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Paige F B Ferguson
- 1325 Science and Engineering Complex, 300 Hackberry Lane, Tuscaloosa, AL 35487 University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|