1
|
Hill V, Cleemput S, Fonseca V, Tegally H, Brito AF, Gifford R, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Ndiaye M, Balde D, Diagne MM, Faye O, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, de Oliveira T, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307504. [PMID: 38798319 PMCID: PMC11118645 DOI: 10.1101/2024.05.16.24307504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Robert Gifford
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, UK
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa M Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Vogels CBF, Hill V, Breban MI, Chaguza C, Paul LM, Sodeinde A, Taylor-Salmon E, Ott IM, Petrone ME, Dijk D, Jonges M, Welkers MRA, Locksmith T, Dong Y, Tarigopula N, Tekin O, Schmedes S, Bunch S, Cano N, Jaber R, Panzera C, Stryker I, Vergara J, Zimler R, Kopp E, Heberlein L, Herzog KS, Fauver JR, Morrison AM, Michael SF, Grubaugh ND. DengueSeq: a pan-serotype whole genome amplicon sequencing protocol for dengue virus. BMC Genomics 2024; 25:433. [PMID: 38693476 PMCID: PMC11062901 DOI: 10.1186/s12864-024-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.
Collapse
Affiliation(s)
- Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA.
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Lauren M Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Emma Taylor-Salmon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Dennis Dijk
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
| | - Timothy Locksmith
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Yibo Dong
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Namratha Tarigopula
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Omer Tekin
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Sarah Schmedes
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Charles Panzera
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Ian Stryker
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Julieta Vergara
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Edgar Kopp
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Kaylee S Herzog
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joseph R Fauver
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrea M Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Scott F Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Nabeshima T, Ngwe Tun MM, Thuy NTT, Hang NLK, Mai LTQ, Hasebe F, Takamatsu Y. An outbreak of a novel lineage of dengue virus 2 in Vietnam in 2022. J Med Virol 2023; 95:e29255. [PMID: 38009688 DOI: 10.1002/jmv.29255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
In 2022, a large dengue outbreak was reported in Vietnam, where dengue was endemic. A total of 1889 acute-phase serum samples were collected from patients with suspected dengue at Vung Tau General Hospital, the core hospital in Vung Tau Province, southern Vietnam. Among the 1889 samples analyzed for laboratory confirmation of dengue virus (DENV) infection, 339 positive cases were identified, of which 130 were primary infections and 209 were secondary infections. DENV-2 was the dominant serotype in both primary and secondary infection groups. Phylogenetic analysis based on sequences of the envelope protein-coding region revealed the emergence of a new DENV-2 lineage during this outbreak.
Collapse
Affiliation(s)
- Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine, Nagasaki University (ITM-NU), Nagasaki, Japan
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University (ITM-NU), Nagasaki, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| | - Nguyen Thi Thu Thuy
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen Le Khanh Hang
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Le Thi Quynh Mai
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University (ITM-NU), Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Nguyen RN, Lam HT, Phan HV. Liver Impairment and Elevated Aminotransferase Levels Predict Severe Dengue in Vietnamese Children. Cureus 2023; 15:e47606. [PMID: 37886653 PMCID: PMC10597804 DOI: 10.7759/cureus.47606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The degree of liver impairment in children with dengue infection varies from mild to severe injury. Aminotransferase levels may be useful in predicting severe dengue. This study aimed to evaluate the degree of liver impairment and determine whether elevated aminotransferases could be used to discriminate between non-severe and severe dengue in Vietnamese children. METHODS This was a prospective cohort study of pediatric patients with confirmed dengue infection who were admitted to Can Tho Children's Hospital, Vietnam. The receiver operating characteristic (ROC) curve was used to discriminate the power of Aspartate transaminase (AST) or Alanine transaminase (ALT) to predict severe dengue. RESULTS Two hundred and thirty confirmed dengue patients were enrolled, including 70% (161) patients with non-severe dengue and 30% (69) with severe dengue. This study indicates that 73.9% of patients had abnormal AST (>40 U/L), and 34.8% of patients had abnormal ALT (>40 U/L). The incidence of dengue patients with hepatitis (AST or ALT ≥ 4×ULN) and severe hepatitis (AST or ALT ≥ 10×ULN) were 18.7% and 17.0%, respectively. At a cut-off point of 120 U/L, AST's AUROC, sensitivity, and specificity were 0.93 (95% CI: 0.90-0.96), 82.5%, and 87.3%, respectively. At a cut-off point of 80 U/L, ALT's AUROC, sensitivity, and specificity were 0.89 (95% CI: 0.84-0,93), 87.5%, and 85.2%, respectively, for predicting severe dengue. CONCLUSION Elevated aminotransferase levels were associated with severe dengue, and AST/ALT were good markers for predicting severe dengue in Vietnamese children.
Collapse
Affiliation(s)
- Rang N Nguyen
- Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho, VNM
| | - Hue T Lam
- Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho, VNM
| | - Hung V Phan
- Pediatrics, Can Tho University of Medicine and Pharmacy, Can Tho, VNM
| |
Collapse
|