1
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
2
|
Ahmad N, Xu Y, Zang F, Li D, Liu Z. The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants. MOLECULAR HORTICULTURE 2024; 4:2. [PMID: 38212862 PMCID: PMC10785382 DOI: 10.1186/s43897-023-00078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.
Collapse
Affiliation(s)
- Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Faheng Zang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEPMS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Poulicard N, Pagán I, González-Jara P, Mora MÁ, Hily JM, Fraile A, Piñero D, García-Arenal F. Repeated loss of the ability of a wild pepper disease resistance gene to function at high temperatures suggests that thermoresistance is a costly trait. THE NEW PHYTOLOGIST 2024; 241:845-860. [PMID: 37920100 DOI: 10.1111/nph.19371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Specificity in plant-pathogen gene-for-gene (GFG) interactions is determined by the recognition of pathogen proteins by the products of plant resistance (R) genes. The evolutionary dynamics of R genes in plant-virus systems is poorly understood. We analyse the evolution of the L resistance locus to tobamoviruses in the wild pepper Capsicum annuum var. glabriusculum (chiltepin), a crop relative undergoing incipient domestication. The frequency, and the genetic and phenotypic diversity, of the L locus was analysed in 41 chiltepin populations under different levels of human management over its distribution range in Mexico. The frequency of resistance was lower in Cultivated than in Wild populations. L-locus genetic diversity showed a strong spatial structure with no isolation-by-distance pattern, suggesting environment-specific selection, possibly associated with infection by the highly virulent tobamoviruses found in the surveyed regions. L alleles differed in recognition specificity and in the expression of resistance at different temperatures, broad-spectrum recognition of P0 + P1 pathotypes and expression above 32°C being ancestral traits that were repeatedly lost along L-locus evolution. Overall, loss of resistance co-occurs with incipient domestication and broad-spectrum resistance expressed at high temperatures has apparent fitness costs. These findings contribute to understand the role of fitness trade-offs in plant-virus coevolution.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
4
|
de Andrés-Torán R, Guidoum L, Zamfir AD, Mora MÁ, Moreno-Vázquez S, García-Arenal F. Tobacco Mild Green Mosaic Virus (TMGMV) Isolates from Different Plant Families Show No Evidence of Differential Adaptation to Their Host of Origin. Viruses 2023; 15:2384. [PMID: 38140625 PMCID: PMC10748040 DOI: 10.3390/v15122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The relevance of tobamoviruses to crop production is increasing due to new emergences, which cannot be understood without knowledge of the tobamovirus host range and host specificity. Recent analyses of tobamovirus occurrence in different plant communities have shown unsuspectedly large host ranges. This was the case of the tobacco mild green mosaic virus (TMGMV), which previously was most associated with solanaceous hosts. We addressed two hypotheses concerning TMGMV host range evolution: (i) ecological fitting, rather than genome evolution, determines TMGMV host range, and (ii) isolates are adapted to the host of origin. We obtained TMGMV isolates from non-solanaceous hosts and we tested the capacity of genetically closely related TMGMV isolates from three host families to infect and multiply in 10 hosts of six families. All isolates systemically infected all hosts, with clear disease symptoms apparent only in solanaceous hosts. TMGMV multiplication depended on the assayed host but not on the isolate's host of origin, with all isolates accumulating to the highest levels in Nicotiana tabacum. Thus, results support that TMGMV isolates are adapted to hosts in the genus Nicotiana, consistent with a well-known old virus-host association. In addition, phenotypic plasticity allows Nicotiana-adapted TMGMV genotypes to infect a large range of hosts, as encountered according to plant community composition and transmission dynamics.
Collapse
Affiliation(s)
- Rafael de Andrés-Torán
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Laura Guidoum
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Adrian D. Zamfir
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Santiago Moreno-Vázquez
- Departamento de Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
- Departamento de Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Zhang H, Hu Q. TOM1 family conservation within the plant kingdom for tobacco mosaic virus accumulation. MOLECULAR PLANT PATHOLOGY 2023; 24:1385-1399. [PMID: 37443447 PMCID: PMC10576174 DOI: 10.1111/mpp.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The susceptibility factor TOBAMOVIRUS MULTIPLICATION 1 (TOM1) is required for efficient multiplication of tobacco mosaic virus (TMV). Although some phylogenetic and functional analyses of the TOM1 family members have been conducted, a comprehensive analysis of the TOM1 homologues based on phylogeny from the most ancient to the youngest representatives within the plant kingdom, analysis of support for tobamovirus accumulation and interaction with other host and viral proteins has not been reported. In this study, using Nicotiana benthamiana and TMV as a model system, we functionally characterized the TOM1 homologues from N. benthamiana and other plant species from different plant lineages. We modified a multiplex genome editing tool and generated a sextuple mutant in which TMV multiplication was dramatically inhibited. We showed that TOM1 homologues from N. benthamiana exhibited variable capacities to support TMV multiplication. Evolutionary analysis revealed that the TOM1 family is restricted to the plant kingdom and probably originated in the Chlorophyta division, suggesting an ancient origin of the TOM1 family. We found that the TOM1 family acquired the ability to promote TMV multiplication after the divergence of moss and spikemoss. Moreover, the capacity of TOM1 orthologues from different plant species to promote TMV multiplication and the interactions between TOM1 and TOM2A and between TOM1 and TMV-encoded replication proteins are highly conserved, suggesting a conserved nature of the TOM2A-TOM1-TMV Hel module in promoting TMV multiplication. Our study not only revealed a conserved nature of a gene module to promote tobamovirus multiplication, but also provides a valuable strategy for TMV-resistant crop development.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qun Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Wendlandt T, Koch C, Britz B, Liedek A, Schmidt N, Werner S, Gleba Y, Vahidpour F, Welden M, Poghossian A, Schöning MJ, Eber FJ, Jeske H, Wege C. Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System. Viruses 2023; 15:1951. [PMID: 37766357 PMCID: PMC10536799 DOI: 10.3390/v15091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Anke Liedek
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Nora Schmidt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Stefan Werner
- Nambawan Biotech GmbH/Now at Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany;
| | - Yuri Gleba
- Nomad Bioscience GmbH, Weinbergweg 22, 06120 Halle, Germany;
| | - Farnoosh Vahidpour
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (F.V.); (M.W.); (M.J.S.)
| | - Melanie Welden
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (F.V.); (M.W.); (M.J.S.)
| | | | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (F.V.); (M.W.); (M.J.S.)
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, 77652 Offenburg, Germany;
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| |
Collapse
|
7
|
Scholthof KBG. The Past Is Present: Coevolution of Viruses and Host Resistance Within Geographic Centers of Plant Diversity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:119-136. [PMID: 37253696 DOI: 10.1146/annurev-phyto-021621-113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding the coevolutionary history of plants, pathogens, and disease resistance is vital for plant pathology. Here, I review Francis O. Holmes's work with tobacco mosaic virus (TMV) framed by the foundational work of Nikolai Vavilov on the geographic centers of origin of plants and crop wild relatives (CWRs) and T. Harper Goodspeed's taxonomy of the genus Nicotiana. Holmes developed a hypothesis that the origin of host resistance to viruses was due to coevolution of both at a geographic center. In the 1950s, Holmes proved that genetic resistance to TMV, especially dominant R-genes, was centered in South America for Nicotiana and other solanaceous plants, including Capsicum, potato, and tomato. One seeming exception was eggplant (Solanum melongena). Not until the acceptance of plate tectonics in the 1960s and recent advances in evolutionary taxonomy did it become evident that northeast Africa was the home of eggplant CWRs, far from Holmes's geographic center for TMV-R-gene coevolution. Unbeknownst to most plant pathologists, Holmes's ideas predated those of H.H. Flor, including experimental proof of the gene-for-gene interaction, identification of R-genes, and deployment of dominant host genes to protect crop plants from virus-associated yield losses.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
8
|
Zamfir AD, Babalola BM, Fraile A, McLeish MJ, García-Arenal F. Tobamoviruses Show Broad Host Ranges and Little Genetic Diversity Among Four Habitat Types of a Heterogeneous Ecosystem. PHYTOPATHOLOGY 2023; 113:1697-1707. [PMID: 36916761 DOI: 10.1094/phyto-11-22-0439-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host ranges of plant viruses are poorly known, as studies have focused on pathogenic viruses in crops and adjacent wild plants. High-throughput sequencing (HTS) avoids the bias toward plant-virus interactions that result in disease. Here we study the host ranges of tobamoviruses, important pathogens of crops, using HTS analyses of an extensive sample of plant communities in four habitats of a heterogeneous ecosystem. Sequences of 17 virus operational taxonomic units (OTUs) matched references in the Tobamovirus genus, eight had narrow host ranges, and five had wide host ranges. Regardless of host range, the OTU hosts belonged to taxonomically distant families, suggesting no phylogenetic constraints in host use associated with virus adaptation, and that tobamoviruses may be host generalists. The OTUs identified as tobacco mild green mosaic virus (TMGMV), tobacco mosaic virus (TMV), pepper mild mottle virus, and Youcai mosaic virus had the largest realized host ranges that occurred across habitats and exhibited host use unrelated to the degree of human intervention. This result is at odds with assumptions that contact-transmitted viruses would be more abundant in crops than in wild plant communities and could be explained by effective seed-, contact-, or pollinator-mediated transmission or by survival in the soil. TMGMV and TMV had low genetic diversity that was not structured according to habitat or host plant taxonomy, which indicated that phenotypic plasticity allows virus genotypes to infect new hosts with no need for adaptive evolution. Our results underscore the relevance of ecological factors in host range evolution, in addition to the more often studied genetic factors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
9
|
Wang X, Larrea-Sarmiento A, Olmedo-Velarde A, Kong A, Borth W, Suzuki JY, Wall MM, Melzer M, Hu J. First detection and complete genome sequence of a new tobamovirus naturally infecting Hibiscus rosa-sinensis in Hawaii. Arch Virol 2023; 168:40. [PMID: 36609629 DOI: 10.1007/s00705-022-05634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/11/2022] [Indexed: 01/09/2023]
Abstract
High-throughput sequencing was used to analyze Hibiscus rosa-sinensis (family Malvaceae) plants with virus-like symptoms in Hawaii. Bioinformatic and phylogenetic analysis revealed the presence of two tobamoviruses, hibiscus latent Fort Pierce virus (HLFPV) and a new tobamovirus with the proposed name "hibiscus latent Hawaii virus" (HLHV). This is the first report of the complete sequence, genome organization, and phylogenetic characterization of a tobamovirus infecting hibiscus in Hawaii. RT-PCR with virus-specific primers and Sanger sequencing further confirmed the presence of these viruses. Inoculation experiments showed that HLFPV could be mechanically transmitted to Nicotiana benthamiana and N. tabacum, while HLHV could only be mechanically transmitted to N. benthamiana.
Collapse
Affiliation(s)
- Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Alexandra Kong
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Jon Y Suzuki
- United States Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
10
|
He M, He CQ, Ding NZ. Evolution of cucurbit-infecting tobamoviruses: Recombination and codon usage bias. Virus Res 2023; 323:198970. [PMID: 36273733 PMCID: PMC10194277 DOI: 10.1016/j.virusres.2022.198970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Currently, there are seven cucurbit-infecting tobamoviruses comprising cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), cucumber fruit mottle mosaic virus (CFMMV), zucchini green mottle mosaic virus (ZGMMV), cucumber mottle virus (CMoV), watermelon green mottle mosaic virus (WGMMV), and Trichosanthes mottle mosaic virus (TrMMV). To gain more insights into their evolution, recombination analyses were conducted. Four CGMMV isolates and one KGMMV isolate were suggested to be recombinants. And there was an interspecies recombination event between CGMMV and ZGMMV. Phylogenetic incongruence was also observed for CGMMV and KGMMV. A probable ancestral pattern was inferred for the gene junction region between RdRp and MP. Codon usage bias analysis revealed that the viral genes had additional influence independent of compositional constraint. In codon preference, the seven viruses were both similar to and different from the host cucumber (Cucumis sativus). Moreover, the viruses were not deficient in CpG and UpA dinucleotides.
Collapse
Affiliation(s)
- Mei He
- Dongying Institute, Shandong Normal University, Dongying 257000, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Cheng-Qiang He
- Dongying Institute, Shandong Normal University, Dongying 257000, China; College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Nai-Zheng Ding
- Dongying Institute, Shandong Normal University, Dongying 257000, China; College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
11
|
Çelik A, Coşkan S, Morca AF, Santosa AI, Koolivand D. Insight into Population Structure and Evolutionary Analysis of the Emerging Tomato Brown Rugose Fruit Virus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233279. [PMID: 36501319 PMCID: PMC9738901 DOI: 10.3390/plants11233279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
A total of 112 symptomatic tomatoes (Solanum lycopersicum L.) and 83 symptomatic pepper (Capsicum spp.) samples were collected in Ankara, Eskişehir, Bartın, and Zonguldak provinces of Turkey during 2020-2021. Six tomatoes and one pepper sample (3.6%) tested positive for tomato brown rugose fruit virus (ToBRFV, genus Tobamovirus) infection by DAS-ELISA and RT-PCR. ToBRFV-positive tomato and pepper plants were removed from greenhouses as soon as possible, and the greenhouses and tools were disinfected completely. Phylogenetic analysis on the complete CP sequences suggested the clustering of 178 GenBank isolates and 7 novel isolates into three groups. A study using DnaSP software showed very low genetic variation among current global ToBRFV isolates. All four ORFs of the virus genome were under strong negative evolutionary constraints, with a ω value range of 0.0869-0.2066. However, three neutrality tests indicated that most populations of the newly identified ToBRFV are currently expanding by assigning statistically significant negative values to them. The very low FST values (0.25 or less) obtained by all comparisons of the isolates from Europe, the Middle East, China, and America concluded that there is no clear genetic separation among currently known isolates from different geographic origins. The divergence time of ToBRFV was estimated to be in the middle of the course of the evolution of 11 tested tobamoviruses. The time to the most recent common ancestors (TMRCAs) of ToBRFV were calculated to be 0.8 and 1.87 with the genetically closest members of Tobamovirus. The results of this study could improve our understanding on the population structure of the emerging ToBRFV.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Turkey
| | - Sevgi Coşkan
- Directorate of Central Plant Protection Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Turkey
| | - Ali Ferhan Morca
- Directorate of Central Plant Protection Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Turkey
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, Sleman, Yogyakarta 55281, Indonesia
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371, Iran
| |
Collapse
|
12
|
Kravchik M, Shnaider Y, Abebie B, Shtarkman M, Kumari R, Kumar S, Leibman D, Spiegelman Z, Gal‐On A. Knockout of SlTOM1 and SlTOM3 results in differential resistance to tobamovirus in tomato. MOLECULAR PLANT PATHOLOGY 2022; 23:1278-1289. [PMID: 35706371 PMCID: PMC9366062 DOI: 10.1111/mpp.13227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 05/15/2023]
Abstract
During tobamovirus-host coevolution, tobamoviruses developed numerous interactions with host susceptibility factors and exploited these interactions for replication and movement. The plant-encoded TOBAMOVIRUS MULTIPLICATION (TOM) susceptibility proteins interact with the tobamovirus replicase proteins and allow the formation of the viral replication complex. Here CRISPR/Cas9-mediated mutagenesis allowed the exploration of the roles of SlTOM1a, SlTOM1b, and SlTOM3 in systemic tobamovirus infection of tomato. Knockouts of both SlTOM1a and SlTOM3 in sltom1a/sltom3 plants resulted in an asymptomatic response to the infection with recently emerged tomato brown rugose fruit virus (ToBRFV). In addition, an accumulation of ToBRFV RNA and coat protein (CP) in sltom1a/sltom3 mutant plants was 516- and 25-fold lower, respectively, than in wild-type (WT) plants at 12 days postinoculation. In marked contrast, sltom1a/sltom3 plants were susceptible to previously known tomato viruses, tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), indicating that SlTOM1a and SlTOM3 are not essential for systemic infection of TMV and ToMV in tomato plants. Knockout of SlTOM1b alone did not contribute to ToBRFV and ToMV resistance. However, in triple mutants sltom1a/sltom3/sltom1b, ToMV accumulation was three-fold lower than in WT plants, with no reduction in symptoms. These results indicate that SlTOM1a and SlTOM3 are essential for the replication of ToBRFV, but not for ToMV and TMV, which are associated with additional susceptibility proteins. Additionally, we showed that SlTOM1a and SlTOM3 positively regulate the tobamovirus susceptibility gene SlARL8a3. Moreover, we found that the SlTOM family is involved in the regulation of plant development.
Collapse
Affiliation(s)
- Michael Kravchik
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Yulia Shnaider
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Bekele Abebie
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Meital Shtarkman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Reenu Kumari
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Surender Kumar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeTsiyonIsrael
| |
Collapse
|
13
|
Chen C, Du M, Peng D, Li W, Xu J, Yang X, Zhou X. A Distinct Tobamovirus Associated With Trichosanthes kirilowii Mottle Mosaic Disease. Front Microbiol 2022; 13:927230. [PMID: 35801111 PMCID: PMC9253623 DOI: 10.3389/fmicb.2022.927230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trichosanthes kirilowii is one of the most important perennial herbaceous vines that have been used in traditional Chinese medicine. In this study, a novel RNA virus was discovered in T. kirilowii plants showing leaf mottling and mosaic symptoms. The complete genome of this virus is 6,524 nucleotides long and encodes four open reading frames which are arranged in a manner typical of tobamoviruses. Phylogenetic analysis based on the complete genome sequence revealed that the virus was clustered into a branch with the tobamoviruses whose natural host are plants belonging to the family Cucurbitaceae. A full-length infectious cDNA clone was then constructed and demonstrated to establish a systemic infection with typical symptoms in Nicotiana benthamiana, T. kirilowii, and five other cucurbitaceous crops including Cucumis melo, C. lanatus, C. sativus, Luffa aegyptiaca, and Cucurbita pepo via agrobacterium-mediated infectivity assays. Further experiments provided evidence that the rod-shaped viral particles derived from the infectious clone could be mechanically transmitted and reproduce indistinguishable symptoms in the tested plants. Taken together, the mottle mosaic disease of T. kirilowii is caused by a distinct tobamovirus, for which the name Trichosanthes mottle mosaic virus (TrMMV) is proposed. As the infectious cDNA clone of TrMMV could also infect five other cucurbit crops, this distinct tobamovirus could be a potential threat to other cucurbitaceous crops.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Min Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wulun Li
- Service Center of Qianshan Plant-Products Industry, Qianshan, China
| | - Jingfeng Xu
- Service Center of Qianshan Plant-Products Industry, Qianshan, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiuling Yang,
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xueping Zhou,
| |
Collapse
|
14
|
Evaluation of New Polyclonal Antibody Developed for Serological Diagnostics of Tomato Mosaic Virus. Viruses 2022; 14:v14061331. [PMID: 35746802 PMCID: PMC9228224 DOI: 10.3390/v14061331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Plant viruses threaten agricultural production by reducing the yield, quality, and economical benefits. Tomato mosaic virus (ToMV) from the genus Tobamovirus causes serious losses in the quantity and quality of tomato production. The management of plant protection is very difficult, mainly due to the vector-less transmission of ToMV. Resistant breeding generally has low effectiveness. The most practical approach is the use of a rapid diagnostic assay of the virus' presence before the symptoms occur in plants, followed by the eradication of virus-infected plants. Such approaches also include serological detection methods (ELISA and Western immunoblotting), where antibodies need to be developed for an immunochemical reaction. The development and characterization of polyclonal antibodies for the detection of ToMV with appropriate parameters (sensitivity, specificity, and cross-reactivity) were the subjects of this study. A new polyclonal antibody, AB-1, was developed in immunized rabbits using the modified oligopeptides with antigenic potential (sequences are revealed) derived from the coat protein of ToMV SL-1. the developed polyclonal antibody. AB-1, showed higher sensitivity when compared with commercially available analogs. It also detected ToMV in infected pepper and eggplant plants, and detected another two tobamoviruses (TMV and PMMoV) and ToMV in soil rhizosphere samples and root residues, even two years after the cultivation of the infected tomato plant.
Collapse
|
15
|
Chanda B, Shamimuzzaman M, Gilliard A, Ling KS. Effectiveness of disinfectants against the spread of tobamoviruses: Tomato brown rugose fruit virus and Cucumber green mottle mosaic virus. Virol J 2021; 18:7. [PMID: 33407624 PMCID: PMC7787650 DOI: 10.1186/s12985-020-01479-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tobamoviruses, including tomato brown rugose fruit virus (ToBRFV) on tomato and pepper, and cucumber green mottle mosaic virus (CGMMV) on cucumber and watermelon, have caused many disease outbreaks around the world in recent years. With seed-borne, mechanical transmission and resistant breaking traits, tobamoviruses pose serious threat to vegetable production worldwide. With the absence of a commercial resistant cultivar, growers are encouraged to take preventative measures to manage those highly contagious viral diseases. However, there is no information available on which disinfectants are effective to deactivate the virus infectivity on contaminated hands, tools and equipment for these emerging tobamoviruses. The purpose of this study was to evaluate a collection of 16 chemical disinfectants for their effectiveness against mechanical transmission of two emerging tobamoviruses, ToBRFV and CGMMV. METHODS Bioassay was used to evaluate the efficacy of each disinfectant based on virus infectivity remaining in a prepared virus inoculum after three short exposure times (10 s, 30 s and 60 s) to the disinfectant and inoculated mechanically on three respective test plants (ToBRFV on tomato and CGMMV on watermelon). Percent infection of plants was measured through symptom observation on the test plants and the presence of the virus was confirmed through an enzyme-linked immunosorbent assay with appropriate antibodies. Statistical analysis was performed using one-way ANOVA based on data collected from three independent experiments. RESULTS Through comparative analysis of percent infection of test plants, a similar trend of efficacy among 16 disinfectants was observed between the two pathosystems. Four common disinfectants with broad spectrum activities against two different tobamoviruses were identified. Those effective disinfectants with 90-100% efficacy against both tobamoviruses were 0.5% Lactoferrin, 2% Virocid, and 10% Clorox, plus 2% Virkon against CGMMV and 3% Virkon against ToBRFV. In addition, SP2700 generated a significant effect against CGMMV, but poorly against ToBRFV. CONCLUSION Identification of common disinfectants against ToBRFV and CGMMV, two emerging tobamoviruses in two different pathosystems suggest their potential broader effects against other tobamoviruses or even other viruses.
Collapse
Affiliation(s)
- Bidisha Chanda
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Md Shamimuzzaman
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102-2765, USA
| | - Andrea Gilliard
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Kai-Shu Ling
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA.
| |
Collapse
|
16
|
Xu Y, Zhang S, Shen J, Wu Z, Du Z, Gao F. The phylogeographic history of tomato mosaic virus in Eurasia. Virology 2020; 554:42-47. [PMID: 33360588 DOI: 10.1016/j.virol.2020.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
Tomato mosaic virus (ToMV) is a tobamovirus affecting solanaceous crops worldwide. The process of its emergence, however, is poorly understood. Here, Bayesian phylogenetic framework was employed to reconstruct the phylogeography of ToMV in Eurasia. The results showed that the ToMV in Europe, Middle East and East Asia has been evolving at a rate of 4.05 × 10-4 substitutions/site/year (95% credibility interval 2.43 × 10-4 - 5.62 × 10-4). Their most recent common ancestor (MRCA), most probably first appeared in Europe, was dated to around 1757 Common Era. The first introduction of ToMV into Middle East occurred in 1920s, with Europe as the source, while the first introduction of ToMV into East Asia occurred shortly afterwards, with Middle East as the source. From about 1950 onwards, inter-regional migrations of ToMV between Europe, Middle East and East Asia have been common. Overall, these data provide a glimpse into the phylogeographic history of ToMV in Eurasia.
Collapse
Affiliation(s)
- Yuting Xu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuling Zhang
- Department of Horticulture and Garden, Fujian Vocational College of Agriculture, Fuzhou, Fujian, 350119, China
| | - Jianguo Shen
- Technology Center of Fuzhou Customs District, Fuzhou, 350001, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Hančinský R, Mihálik D, Mrkvová M, Candresse T, Glasa M. Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. PLANTS 2020; 9:plants9050667. [PMID: 32466094 PMCID: PMC7284659 DOI: 10.3390/plants9050667] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
Plant viruses infecting crop species are causing long-lasting economic losses and are endangering food security worldwide. Ongoing events, such as climate change, changes in agricultural practices, globalization of markets or changes in plant virus vector populations, are affecting plant virus life cycles. Because farmer’s fields are part of the larger environment, the role of wild plant species in plant virus life cycles can provide information about underlying processes during virus transmission and spread. This review focuses on the Solanaceae family, which contains thousands of species growing all around the world, including crop species, wild flora and model plants for genetic research. In a first part, we analyze various viruses infecting Solanaceae plants across the agro-ecological interface, emphasizing the important role of virus interactions between the cultivated and wild zones as global changes affect these environments on both local and global scales. To cope with these changes, it is necessary to adjust prophylactic protection measures and diagnostic methods. As illustrated in the second part, a complex virus research at the landscape level is necessary to obtain relevant data, which could be overwhelming. Based on evidence from previous studies we conclude that Solanaceae plant communities can be targeted to address complete life cycles of viruses with different life strategies within the agro-ecological interface. Data obtained from such research could then be used to improve plant protection methods by taking into consideration environmental factors that are impacting the life cycles of plant viruses.
Collapse
Affiliation(s)
- Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Institute of High Mountain Biology, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešťany, Slovakia
| | - Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Thierry Candresse
- INRAE, University Bordeaux, UMR BFP, 33140 Villenave d’Ornon, France;
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5930-2447
| |
Collapse
|
18
|
Salgado-Ortíz H, De La Torre-Almaraz R, Sánchez-Navarro JÁ, Pallás V. Identification and genomic characterization of a novel tobamovirus from prickly pear cactus. Arch Virol 2020; 165:781-784. [PMID: 31980940 DOI: 10.1007/s00705-020-04528-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022]
Abstract
In this work, we describe the complete sequence and genome organization of a novel tobamovirus detected in a prickly pear plant (Opuntia sp.) by high-throughput sequencing, tentatively named "opuntia virus 2". The full genome of opuntia virus 2 is 6,453 nucleotides in length and contains four open reading frames (ORFs) coding for the two subunits of the RNA polymerase, the movement protein, and the coat protein, respectively. Phylogenetic analysis using the complete nucleotide sequence revealed that the virus belongs to the genus Tobamovirus (family Virgaviridae), showing the highest nucleotide sequence identity (49.8%) with cactus mild mottle virus (CMMoV), being indicating that it belongs in the Cactaceae subgroup of tobamoviruses.
Collapse
Affiliation(s)
- Héctor Salgado-Ortíz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54074, Tlalnepantla, Estado de México, Mexico.
| | - Rodolfo De La Torre-Almaraz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54074, Tlalnepantla, Estado de México, Mexico
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| |
Collapse
|
19
|
Gibbs AJ, Hajizadeh M, Ohshima K, Jones RA. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020; 12:E132. [PMID: 31979056 PMCID: PMC7077269 DOI: 10.3390/v12020132] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, encouraged by the dictum of Theodosius Dobzhansky that "Nothing in biology makes sense except in the light of evolution", we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000-30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%-64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants.
Collapse
Affiliation(s)
- Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| | - Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-2410 Korimoto, Kagoshima 890-0065, Japan
| | - Roger A.C. Jones
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Moury B, Desbiez C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses 2020; 12:v12010111. [PMID: 31963241 PMCID: PMC7020010 DOI: 10.3390/v12010111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Virus host range, i.e., the number and diversity of host species of viruses, is an important determinant of disease emergence and of the efficiency of disease control strategies. However, for plant viruses, little is known about the genetic or ecological factors involved in the evolution of host range. Using available genome sequences and host range data, we performed a phylogenetic analysis of host range evolution in the genus Potyvirus, a large group of plant RNA viruses that has undergone a radiative evolution circa 7000 years ago, contemporaneously with agriculture intensification in mid Holocene. Maximum likelihood inference based on a set of 59 potyviruses and 38 plant species showed frequent host range changes during potyvirus evolution, with 4.6 changes per plant species on average, including 3.1 host gains and 1.5 host loss. These changes were quite recent, 74% of them being inferred on the terminal branches of the potyvirus tree. The most striking result was the high frequency of correlated host gains occurring repeatedly in different branches of the potyvirus tree, which raises the question of the dependence of the molecular and/or ecological mechanisms involved in adaptation to different plant species.
Collapse
|
21
|
Tóth T, Gyula P, Salamon P, Kis S, Sós-Hegedűs A, Szittya G. Molecular characterization and In Vitro synthesis of infectious RNA of a Turnip vein-clearing virus isolated from Alliaria petiolata in Hungary. PLoS One 2019; 14:e0224398. [PMID: 31648277 PMCID: PMC6812821 DOI: 10.1371/journal.pone.0224398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022] Open
Abstract
A tobamovirus was isolated from leaves of Alliaria petiolata plants, showing vein-clearing, interveinal chlorosis, and moderate deformation. Host range experiments revealed a high similarity of isolate ApH both to ribgrass mosaic viruses and turnip vein-clearing viruses. The complete nucleotide sequence of the viral genome was determined. The genomic RNA is composed of 6312 nucleotides and contains four open reading frames (ORF). ORF1 is 3324 nt-long and encodes a polypeptide of about 125.3 kDa. The ORF1 encoded putative replication protein contains an Alphavirus-like methyltransferase domain. ORF2 is 4806 nt-long and encodes a polypeptide of about 182 kDa. The ORF2 encoded putative replication protein contains an RNA-dependent RNA polymerase, catalytic domain. ORF3 encodes the putative cell-to-cell movement protein with a molecular weight of 30.1 kDa. ORF4 overlaps with ORF3 and encodes the coat protein with a size of 17.5 kDa. Sequence comparisons revealed that the ApH isolate has the highest similarity to turnip vein-clearing viruses and should be considered an isolate of Turnip vein-clearing virus (TVCV). This is the first report on the occurrence of TVCV in Hungary. In vitro transcripts prepared from the full-length cDNA clone of TVCV-ApH were highly infectious and induced typical symptoms characteristic to the original isolate of the virus. Since infectious clones of TVCV-ApH and crTMV (another isolate of TVCV) markedly differed in respect to recovery phenotype in Arabidopsis thaliana, it is feasible to carry out gene exchange or mutational studies to determine viral factors responsible for the symptom recovery phenotype.
Collapse
Affiliation(s)
- Tamás Tóth
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Péter Gyula
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Pál Salamon
- Department of Genetics, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Szilvia Kis
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - Anita Sós-Hegedűs
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| | - György Szittya
- Department of Plant Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Gödöllő, Hungary
| |
Collapse
|
22
|
Bi X, Li X, Yu H, An M, Li R, Xia Z, Wu Y. Development of a multiplex RT-PCR assay for simultaneous detection of Cucumber green mottle mosaic virus and Acidovorax citrulli in watermelon. PeerJ 2019; 7:e7539. [PMID: 31497401 PMCID: PMC6708580 DOI: 10.7717/peerj.7539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Watermelon (Citrullus lanatus Thunb.) is considered as a popular and nutritious fruit crop worldwide. Watermelon blood flesh disease caused by Cucumber green mottle mosaic virus (CGMMV) and bacterial fruit blotch caused by Acidovorax citrulli, are two major quarantine diseases of watermelon and result in considerable losses to global watermelon production. In this study, a multiplex reverse-transcription polymerase chain reaction (RT-PCR) method was developed for simultaneous detection of CGMMV and A. citrulli in both watermelon leaves and seeds. Two pairs of specific primers were designed based on the conserved sequences of the genomic RNA of CGMMV and the internal transcribed spacer of A. citrulli, respectively. Transcriptional elongation factor-1α from watermelon was added as an internal reference gene to prevent false negatives. No cross-reactivity was detected with other viral or bacterial pathogens infecting watermelon. Moreover, the multiplex RT-PCR showed high sensitivity and could simultaneously detect CGMMV and A. citrulli as little as 102 copies of plasmid DNA. This method was successfully applied to test field-collected watermelon leaves and stored seeds of cucurbitaceous crops. These results suggested that the developed multiplex RT-PCR technique is a rapid, efficient, and sensitive method for simultaneous detection of CGMMV and A. citrulli, providing technical support for monitoring, predicting, and preventing these two quarantine diseases. To our knowledge, this is the first report on simultaneous detection of a virus and a bacterium by multiplex RT-PCR in watermelon.
Collapse
Affiliation(s)
- Xinyue Bi
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaodong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- General Station of Forest and Grassland Pest and Diseases Control, National Forestry and Grassland Administration, Shenyang, Liaoning, China
| | - Haibo Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Rui Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol 2019; 17:632-644. [PMID: 31312033 DOI: 10.1038/s41579-019-0232-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.
Collapse
Affiliation(s)
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Paterna, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France.,BGPI, CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
24
|
Kirsip H, Abroi A. Protein Structure-Guided Hidden Markov Models (HMMs) as A Powerful Method in the Detection of Ancestral Endogenous Viral Elements. Viruses 2019; 11:v11040320. [PMID: 30986983 PMCID: PMC6520822 DOI: 10.3390/v11040320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
It has been believed for a long time that the transfer and fixation of genetic material from RNA viruses to eukaryote genomes is very unlikely. However, during the last decade, there have been several cases in which “virus-to-host” gene transfer from various viral families into various eukaryotic phyla have been described. These transfers have been identified by sequence similarity, which may disappear very quickly, especially in the case of RNA viruses. However, compared to sequences, protein structure is known to be more conserved. Applying protein structure-guided protein domain-specific Hidden Markov Models, we detected homologues of the Virgaviridae capsid protein in Schizophora flies. Further data analysis supported “virus-to-host” transfer into Schizophora ancestors as a single transfer event. This transfer was not identifiable by BLAST or by other methods we applied. Our data show that structure-guided Hidden Markov Models should be used to detect ancestral virus-to-host transfers.
Collapse
Affiliation(s)
- Heleri Kirsip
- Department of Bioinformatics, University of Tartu, Tartu, 51010, Riia 23, Estonia.
| | - Aare Abroi
- Institute of Technology, University of Tartu, Tartu, 50411, Nooruse 1, Estonia.
| |
Collapse
|
25
|
Vlok M, Gibbs AJ, Suttle CA. Metagenomes of a Freshwater Charavirus from British Columbia Provide a Window into Ancient Lineages of Viruses. Viruses 2019; 11:v11030299. [PMID: 30934644 PMCID: PMC6466400 DOI: 10.3390/v11030299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Charophyte algae, not chlorophyte algae, are the ancestors of ‘higher plants’; hence, viruses infecting charophytes may be related to those that first infected higher plants. Streamwaters from British Columbia, Canada, yielded single-stranded RNA metagenomes of Charavirus canadensis (CV-Can), that are similar in genomic architecture, length (9593 nt), nucleotide identity (63.4%), and encoded amino-acid sequence identity (53.0%) to those of Charavirus australis (CV-Aus). The sequences of their RNA-dependent RNA-polymerases (RdRp) resemble those found in benyviruses, their helicases those of hepaciviruses and hepegiviruses, and their coat-proteins (CP) those of tobamoviruses; all from the alphavirus/flavivirus branch of the ‘global RNA virome’. The 5’-terminus of the CV-Can genome, but not that of CV-Aus, is complete and encodes a methyltransferase domain. Comparisons of CP sequences suggests that Canadian and Australian charaviruses diverged 29–46 million years ago (mya); whereas, the CPs of charaviruses and tobamoviruses last shared a common ancestor 212 mya, and the RdRps of charaviruses and benyviruses 396 mya. CV-Can is sporadically abundant in low-nutrient freshwater rivers in British Columbia, where Chara braunii, a close relative of C. australis, occurs, and which may be its natural host. Charaviruses, like their hosts, are ancient and widely distributed, and thus provide a window to the viromes of early eukaryotes and, even, Archaea.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
| | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia.
| | - Curtis A Suttle
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
26
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
28
|
Santillan FW, Fribourg CE, Adams IP, Gibbs AJ, Boonham N, Kehoe MA, Maina S, Jones RAC. The Biology and Phylogenetics of Potato virus S Isolates from the Andean Region of South America. PLANT DISEASE 2018; 102:869-885. [PMID: 30673374 DOI: 10.1094/pdis-09-17-1414-re] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biological characteristics of 11 Potato virus S (PVS) isolates from three cultivated potato species (Solanum spp.) growing in five Andean countries and 1 from Scotland differed in virulence depending on isolate and host species. Nine isolates infected Chenopodium quinoa systemically but two others and the Scottish isolate remained restricted to inoculated leaves; therefore, they belonged to biologically defined strains PVSA and PVSO, respectively. When nine wild potato species were inoculated, most developed symptomless systemic infection but Solanum megistacrolobum developed systemic hypersensitive resistance (SHR) with one PVSO and two PVSA isolates. Andean potato cultivars developed mostly asymptomatic primary infection but predominantly symptomatic secondary infection. In both wild and cultivated potato plants, PVSA and PVSO elicited similar foliage symptoms. Following graft inoculation, all except two PVSO isolates were detected in partially PVS-resistant cultivar Saco, while clone Snec 66/139-19 developed SHR with two isolates each of PVSA and PVSO. Myzus persicae transmitted all nine PVSA isolates but none of the three PVSO isolates. All 12 isolates were transmitted by plant-to-plant contact. In infective sap, all isolates had thermal inactivation points of 55 to 60°C. Longevities in vitro were 25 to 40 days with six PVSA isolates but less than 21 days for the three PVSO isolates. Dilution end points were 10-3 for two PVSO isolates but 10-4 to 10-6 with the other isolates. Complete new genome sequences were obtained from seven Andean PVS isolates; seven isolates from Africa, Australia, or Europe; and single isolates from S. muricatum and Arracacia xanthorhiza. These 17 new genomes and 23 from GenBank provided 40 unique sequences; however, 5 from Eurasia were recombinants. Phylogenetic analysis of the 35 nonrecombinants revealed three major lineages, two predominantly South American (SA) and evenly branched and one non-SA with a single long basal branch and many distal subdivisions. Using least squares dating and nucleotide sequences, the two nodes of the basal PVS trifurcation were dated at 1079 and 1055 Common Era (CE), the three midphylogeny nodes of the SA lineages at 1352, 1487, and 1537 CE, and the basal node to the non-SA lineage at 1837 CE. The Potato rough dwarf virus/Potato virus P (PVS/PRDV/PVP) cluster was sister to PVS and diverged 5,000 to 7,000 years ago. The non-SA PVS lineage contained 18 of 19 isolates from S. tuberosum subsp. tuberosum but the two SA lineages contained 6 from S. tuberosum subsp. andigena, 4 from S. phureja, 3 from S. tuberosum subsp. tuberosum, and 1 each from S. muricatum, S. curtilobum, and A. xanthorrhiza. This suggests that a potato-infecting proto-PVS/PRDV/PVP emerged in South America at least 5,000 years ago, became endemic, and diverged into a range of local Solanum spp. and other species, and one early lineage spread worldwide in potato. Preventing establishment of the SA lineages is advised for all countries still without them.
Collapse
Affiliation(s)
- Franklin W Santillan
- Departamento de Fitopatologia, Universidad Nacional Agraria, La Molina, Lima, Peru; and Universidad de Cuenca, Cuenca, Azuay, Ecuador
| | - Cesar E Fribourg
- Departamento de Fitopatologia, Universidad Nacional Agraria, Peru
| | | | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, ACT, Australia
| | - Neil Boonham
- Fera Ltd.; and Institute for Agrifood Research Innovations, Newcastle University, Newcastle upon Tyne, UK
| | - Monica A Kehoe
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Solomon Maina
- Department of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, Australia
| | - Roger A C Jones
- Institute of Agriculture, University of Western Australia; and Crop Protection Branch, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
29
|
Philosoph AM, Dombrovsky A, Elad Y, Jaiswal AK, Koren A, Lachman O, Frenkel O. Combined Infection with Cucumber green mottle mosaic virus and Pythium Species Causes Extensive Collapse in Cucumber Plants. PLANT DISEASE 2018; 102:753-759. [PMID: 30673404 DOI: 10.1094/pdis-07-17-1124-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the last decade, the phenomenon of late-wilting has increased in cucumber greenhouses during Cucumber green mottle mosaic virus (CGMMV) epidemics. Because the wilting appears in defined patches accompanied by root rot, it was hypothesized that the phenomenon is caused by coinfection of soilborne pathogens and CGMMV. A field survey showed that 69% of the collapsed plants were infected with both Pythium spp. and CGMMV, whereas only 20 and 6.6% were singly infected with Pythium spp. or CGMMV, respectively. Artificial inoculations in controlled-environmental growth chambers and glasshouse experiments showed that coinfection with Pythium spinosum and CGMMV leads to a strong synergistic wilting effect and reduces growth parameters. The synergy values of the wilting effect were not influenced by the time interval between P. spinosum and CGMMV infection. However, dry mass synergy values were decreased with longer intervals between infections. The results obtained in this study support the complexity of the wilting phenomenon described in commercial cucumber grown in protected structures during infection of Pythium spp. on the background of a vast CGMMV epidemic. They encourage a wider perspective of the complexity of agricultural diseases to apply the most suitable disease management.
Collapse
Affiliation(s)
- Amit M Philosoph
- Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel; and The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center
| | - Yigal Elad
- Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center
| | - Amit K Jaiswal
- Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center; and The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem
| | | | - Oded Lachman
- Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center
| | - Omer Frenkel
- Department of Plant Pathology and Weed Sciences, Agricultural Research Organization, The Volcani Center
| |
Collapse
|
30
|
Maayan Y, Pandaranayaka EPJ, Srivastava DA, Lapidot M, Levin I, Dombrovsky A, Harel A. Using genomic analysis to identify tomato Tm-2 resistance-breaking mutations and their underlying evolutionary path in a new and emerging tobamovirus. Arch Virol 2018; 163:1863-1875. [PMID: 29582165 DOI: 10.1007/s00705-018-3819-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
In September 2014, a new tobamovirus was discovered in Israel that was able to break Tm-2-mediated resistance in tomato that had lasted 55 years. The virus was isolated, and sequencing of its genome showed it to be tomato brown rugose fruit virus (ToBRFV), a new tobamovirus recently identified in Jordan. Previous studies on mutant viruses that cause resistance breaking, including Tm-2-mediated resistance, demonstrated that this phenotype had resulted from only a few mutations. Identification of important residues in resistance breakers is hindered by significant background variation, with 9-15% variability in the genomic sequences of known isolates. To understand the evolutionary path leading to the emergence of this resistance breaker, we performed a comprehensive phylogenetic analysis and genomic comparison of different tobamoviruses, followed by molecular modeling of the viral helicase. The phylogenetic location of the resistance-breaking genes was found to be among host-shifting clades, and this, together with the observation of a relatively low mutation rate, suggests that a host shift contributed to the emergence of this new virus. Our comparative genomic analysis identified twelve potential resistance-breaking mutations in the viral movement protein (MP), the primary target of the related Tm-2 resistance, and nine in its replicase. Finally, molecular modeling of the helicase enabled the identification of three additional potential resistance-breaking mutations.
Collapse
Affiliation(s)
- Yonatan Maayan
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Eswari P J Pandaranayaka
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Dhruv Aditya Srivastava
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Moshe Lapidot
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Ilan Levin
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Arye Harel
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
31
|
Dombrovsky A, Tran-Nguyen LTT, Jones RAC. Cucumber green mottle mosaic virus: Rapidly Increasing Global Distribution, Etiology, Epidemiology, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:231-256. [PMID: 28590876 DOI: 10.1146/annurev-phyto-080516-035349] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) was first described in 1935 infecting cucumber, making it one of the first plant viruses to be studied. Its initial distribution occurred out of England to other countries. This was followed by its distribution from England and these other countries to additional countries. This process increased slowly between 1935 and 1985, faster between 1986 and 2006, and rapidly between 2007 and 2016. The discovery that it diminished cucurbit fruit yields and quality, especially of watermelon, prompted a substantial research effort in worst-affected countries. These efforts included obtaining insight into its particle and genome characteristics, evolution, and epidemiology. CGMMV's particle stability, ease of contact transmission, and seed transmissibility, which are typical tobamovirus characteristics, explained its complex disease cycle and its ability to spread locally or over long distances without a vector. Knowledge of its disease etiology and epidemiology enabled development of integrated disease management approaches that rely heavily on diverse phytosanitary measures. Dispersal of seed-borne infection through the international seed trade following cucurbit seed crop production in tropical or subtropical countries explains its recent rapid dispersion worldwide.
Collapse
Affiliation(s)
- Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
| | - Lucy T T Tran-Nguyen
- Plant Industries Division, Northern Territory Department of Primary Industry and Resources, Darwin, Northern Territory 0801, Australia
| | - Roger A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, Western Australia 6009, Australia;
- Crop Protection Branch, Department of Agriculture and Food, Western Australia, Department of Agriculture and Food, South Perth, Western Australia 6151, Australia
| |
Collapse
|
32
|
Dorokhov YL, Sheshukova EV, Komarova TV. Tobamovirus 3'-Terminal Gene Overlap May be a Mechanism for within-Host Fitness Improvement. Front Microbiol 2017; 8:851. [PMID: 28553276 PMCID: PMC5425575 DOI: 10.3389/fmicb.2017.00851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes (OGs) are a universal phenomenon in all kingdoms, and viruses display a high content of OGs combined with a high rate of evolution. It is believed that the mechanism of gene overlap is based on overprinting of an existing gene. OGs help virus genes compress a maximum amount of information into short sequences, conferring viral proteins with novel features and thereby increasing their within-host fitness. Analysis of tobamovirus 3′-terminal genes reveals at least two modes of OG organization and mechanisms of interaction with the host. Originally isolated from Solanaceae species, viruses (referred to as Solanaceae-infecting) such as tobacco mosaic virus do not show 3′-terminal overlap between movement protein (MP) and coat protein (CP) genes but do contain open reading frame 6 (ORF6), which overlaps with both genes. Conversely, tobamoviruses, originally isolated from Brassicaceae species (referred to as Brassicaceae-infecting) and also able to infect Solanaceae plants, have no ORF6 but are characterized by overlapping MP and CP genes. Our analysis showed that the MP/CP overlap of Brassicaceae-infecting tobamoviruses results in the following: (i) genome compression and strengthening of subgenomic promoters; (ii) CP gene early expression directly from genomic and dicistronic MP subgenomic mRNA using an internal ribosome entry site (IRES) and a stable hairpin structure in the overlapping region; (iii) loss of ORF6, which influences the symptomatology of Solanaceae-infecting tobamoviruses; and (iv) acquisition of an IRES polypurine-rich region encoding an MP nuclear localization signal. We believe that MP/CP gene overlap may constitute a mechanism for host range expansion and virus adjustment to Brassicaceae plants.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|