1
|
Zanardo LG, Trindade TA, Mar TB, Barbosa TMC, Milanesi DF, Alves MS, Lima RRPN, Zerbini FM, Janssen A, Mizubuti ESG, Elliot SL, Carvalho CM. Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Res 2021; 303:198389. [PMID: 33716182 DOI: 10.1016/j.virusres.2021.198389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Major themes in pathogen evolution are emergence, evolution of virulence, host adaptation and the processes that underlie them. RNA viruses are of particular interest due to their rapid evolution. The in vivo molecular evolution of an RNA plant virus was demonstrated here using a necrotic isolate of cowpea mild mottle virus (CPMMV) and a susceptible soybean genotype submitted to serial inoculations. We show that the virus lost the capacity to cause necrosis after six passages through the host plant. When a severe bottleneck was imposed, virulence reduction occurred in the second passage. The change to milder symptoms had fitness benefits for the virus (higher RNA accumulation) and for its vector, the whitefly Bemisia tabaci. Genetic polymorphisms were highest in ORF1 (viral replicase) and were independent of the symptom pattern. Recombination was a major contributor to this diversity - even with the strong genetic bottleneck, recombination events and hot spots were detected within ORF1. Virulence reduction was associated with different sites in ORF1 associated to recombination events in both experiments. Overall, the results demonstrate that the reduction in virulence was a consequence of the emergence of new variants, driven by recombination. Besides providing details of the evolutionary mechanisms behind a reduction in virulence and its effect under viral and vector fitness, we propose that this recombination-driven switch in virulence allows the pathogen to rapidly adapt to a new host and, potentially, switch back.
Collapse
Affiliation(s)
- Larissa G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tiago A Trindade
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Talita B Mar
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tarsiane M C Barbosa
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diogo F Milanesi
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Murilo S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Roberta R P N Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil; IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Simon L Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudine M Carvalho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Cook G, Coetzee B, Bester R, Breytenbach JHJ, Steyn C, de Bruyn R, Burger JT, Maree HJ. Citrus Tristeza Virus Isolates of the Same Genotype Differ in Stem Pitting Severity in Grapefruit. PLANT DISEASE 2020; 104:2362-2368. [PMID: 32689882 DOI: 10.1094/pdis-12-19-2586-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two isolates of the T68 genotype of citrus tristeza virus (CTV) were derived from a common source, GFMS12, by single aphid transmission. These isolates, named GFMS12-8 and GFMS12-1.3, induced stem pitting with differing severity in 'Duncan' grapefruit (Citrus × paradisi [Macfad.]). Full-genome sequencing of these isolates showed only minor nucleotide sequence differences totaling 45 polymorphisms. Numerous nucleotide changes, in relatively close proximity, were detected in the p33 open reading frame (ORF) and the leader protease domains of ORF1a. This is the first report of full-genome characterization of CTV isolates of a single genotype, derived from the same source, but showing differences in pathogenicity. The results demonstrate the development of intragenotype heterogeneity known to occur with single-stranded RNA viruses. Identification of genetic variability between isolates showing different pathogenicity will enable interrogation of specific genome regions for potential stem pitting determinants.
Collapse
Affiliation(s)
- Glynnis Cook
- Citrus Research International, Nelspruit, 1200, South Africa
- Department of Genetics, Stellenbosch University, Matieland, 7602, South Africa
| | - Beatrix Coetzee
- Department of Genetics, Stellenbosch University, Matieland, 7602, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Matieland, 7602, South Africa
| | | | - Chanel Steyn
- Citrus Research International, Nelspruit, 1200, South Africa
| | | | - Johan T Burger
- Department of Genetics, Stellenbosch University, Matieland, 7602, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Matieland, 7602, South Africa
- Citrus Research International, Matieland, 7602, South Africa
| |
Collapse
|
3
|
Hančinský R, Mihálik D, Mrkvová M, Candresse T, Glasa M. Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. PLANTS 2020; 9:plants9050667. [PMID: 32466094 PMCID: PMC7284659 DOI: 10.3390/plants9050667] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
Plant viruses infecting crop species are causing long-lasting economic losses and are endangering food security worldwide. Ongoing events, such as climate change, changes in agricultural practices, globalization of markets or changes in plant virus vector populations, are affecting plant virus life cycles. Because farmer’s fields are part of the larger environment, the role of wild plant species in plant virus life cycles can provide information about underlying processes during virus transmission and spread. This review focuses on the Solanaceae family, which contains thousands of species growing all around the world, including crop species, wild flora and model plants for genetic research. In a first part, we analyze various viruses infecting Solanaceae plants across the agro-ecological interface, emphasizing the important role of virus interactions between the cultivated and wild zones as global changes affect these environments on both local and global scales. To cope with these changes, it is necessary to adjust prophylactic protection measures and diagnostic methods. As illustrated in the second part, a complex virus research at the landscape level is necessary to obtain relevant data, which could be overwhelming. Based on evidence from previous studies we conclude that Solanaceae plant communities can be targeted to address complete life cycles of viruses with different life strategies within the agro-ecological interface. Data obtained from such research could then be used to improve plant protection methods by taking into consideration environmental factors that are impacting the life cycles of plant viruses.
Collapse
Affiliation(s)
- Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Institute of High Mountain Biology, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešťany, Slovakia
| | - Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Thierry Candresse
- INRAE, University Bordeaux, UMR BFP, 33140 Villenave d’Ornon, France;
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5930-2447
| |
Collapse
|
4
|
Wylie SJ, Tran TT, Nguyen DQ, Koh SH, Chakraborty A, Xu W, Jones MGK, Li H. A virome from ornamental flowers in an Australian rural town. Arch Virol 2019; 164:2255-2263. [PMID: 31183556 DOI: 10.1007/s00705-019-04317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/18/2019] [Indexed: 11/25/2022]
Abstract
Samples of leaves exhibiting symptoms resembling those caused by virus infection were collected from ornamental street flowers in a rural town in Western Australia. Thirty-seven leaf samples were collected from plants of iris, tulip, lily, daffodil, stock and grape hyacinth. Shotgun sequencing of cDNA derived from leaf samples was done, and analysis showed that about 6% of the sequences obtained were of viral origin. Assembly of virus-like sequences revealed complete or partial genome sequences of 13 virus isolates representing 11 virus species. Eight of the isolates were of potyviruses, one was of a macluravirus, three were of potexviruses, and one was of a bunya-like virus. The complete genome of an isolate originally classified as ornithogalum mosaic virus was genetically divergent and differed in polyprotein cleavage motifs, and we propose that this isolate represents a distinct species. The implications of importing to Australia live plant propagules infected with viruses are discussed.
Collapse
Affiliation(s)
- S J Wylie
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia.
| | - T T Tran
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - D Q Nguyen
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - S-H Koh
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - A Chakraborty
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - W Xu
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - M G K Jones
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - H Li
- Plant Biotechnology Research Group-Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
5
|
Vlok M, Gibbs AJ, Suttle CA. Metagenomes of a Freshwater Charavirus from British Columbia Provide a Window into Ancient Lineages of Viruses. Viruses 2019; 11:v11030299. [PMID: 30934644 PMCID: PMC6466400 DOI: 10.3390/v11030299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Charophyte algae, not chlorophyte algae, are the ancestors of ‘higher plants’; hence, viruses infecting charophytes may be related to those that first infected higher plants. Streamwaters from British Columbia, Canada, yielded single-stranded RNA metagenomes of Charavirus canadensis (CV-Can), that are similar in genomic architecture, length (9593 nt), nucleotide identity (63.4%), and encoded amino-acid sequence identity (53.0%) to those of Charavirus australis (CV-Aus). The sequences of their RNA-dependent RNA-polymerases (RdRp) resemble those found in benyviruses, their helicases those of hepaciviruses and hepegiviruses, and their coat-proteins (CP) those of tobamoviruses; all from the alphavirus/flavivirus branch of the ‘global RNA virome’. The 5’-terminus of the CV-Can genome, but not that of CV-Aus, is complete and encodes a methyltransferase domain. Comparisons of CP sequences suggests that Canadian and Australian charaviruses diverged 29–46 million years ago (mya); whereas, the CPs of charaviruses and tobamoviruses last shared a common ancestor 212 mya, and the RdRps of charaviruses and benyviruses 396 mya. CV-Can is sporadically abundant in low-nutrient freshwater rivers in British Columbia, where Chara braunii, a close relative of C. australis, occurs, and which may be its natural host. Charaviruses, like their hosts, are ancient and widely distributed, and thus provide a window to the viromes of early eukaryotes and, even, Archaea.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
| | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia.
| | - Curtis A Suttle
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|