1
|
Umego EC, Barry-Ryan C. Review of the valorization initiatives of brewing and distilling by-products. Crit Rev Food Sci Nutr 2023; 64:8231-8247. [PMID: 37039081 DOI: 10.1080/10408398.2023.2198012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Beer and spirits are two of the most consumed alcoholic beverages in the world, and their production generates enormous amounts of by-product materials. This ranges from spent grain, spent yeast, spent kieselguhr, trub, carbon dioxide, pot ale, and distilled gin spent botanicals. The present circular economy dynamics and increased awareness on resource use for enhanced sustainable production practices have driven changes and innovations in the management practices and utilization of these by-products. These include food product development, functional food applications, biotechnological applications, and bioactive compounds extraction. As a result, the brewing and distilling sector of the food and drinks industry is beginning to see a shift from conventional uses of by-products such as animal feed to more innovative applications. This review paper therefore explored some of these valorization initiatives and the current state of the art.
Collapse
Affiliation(s)
- Ekene Christopher Umego
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| | - Catherine Barry-Ryan
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| |
Collapse
|
2
|
Chen J, Fan J, Liu W, Wang Z, Ren A, Shi L. Trehalose‐6‐phosphate synthase influences polysaccharide synthesis and cell wall components in
Ganoderma lucidum. J Basic Microbiol 2022; 62:1337-1345. [DOI: 10.1002/jobm.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Juhong Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Junpei Fan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Weidong Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Zi Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| |
Collapse
|
3
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
4
|
Porras-Agüera JA, Mauricio JC, Moreno-García J, Moreno J, García-Martínez T. A Differential Proteomic Approach to Characterize the Cell Wall Adaptive Response to CO 2 Overpressure during Sparkling Wine-Making Process. Microorganisms 2020; 8:E1188. [PMID: 32759881 PMCID: PMC7465653 DOI: 10.3390/microorganisms8081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, a first proteomic approach was carried out to characterize the adaptive response of cell wall-related proteins to endogenous CO2 overpressure, which is typical of second fermentation conditions, in two wine Saccharomyces cerevisiae strains (P29, a conventional second fermentation strain, and G1, a flor yeast strain implicated in sherry wine making). The results showed a high number of cell wall proteins in flor yeast G1 under pressure, highlighting content at the first month of aging. The cell wall proteomic response to pressure in flor yeast G1 was characterized by an increase in both the number and content of cell wall proteins involved in glucan remodeling and mannoproteins. On the other hand, cell wall proteins responsible for glucan assembly, cell adhesion, and lipid metabolism stood out in P29. Over-represented proteins under pressure were involved in cell wall integrity (Ecm33p and Pst1p), protein folding (Ssa1p and Ssa2p), and glucan remodeling (Exg2p and Scw4p). Flocculation-related proteins were not identified under pressure conditions. The use of flor yeasts for sparkling wine elaboration and improvement is proposed. Further research based on the genetic engineering of wine yeast using those genes from protein biomarkers under pressure alongside the second fermentation in bottle is required to achieve improvements.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, C3 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| |
Collapse
|
5
|
Puligundla P, Smogrovicova D, Mok C, Obulam VSR. Recent developments in high gravity beer-brewing. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Son SH, Kim JE, Oh SS, Lee JY. Engineering Cell Wall Integrity Enables Enhanced Squalene Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4922-4929. [PMID: 32266810 DOI: 10.1021/acs.jafc.0c00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial production of many lipophilic compounds is often limited by product toxicity to host cells. Engineering cell walls can help mitigate the damage caused by lipophilic compounds by increasing tolerance to those compounds. To determine if the cell wall engineering would be effective in enhancing lipophilic compound production, we used a previously constructed squalene-overproducing yeast strain (SQ) that produces over 600 mg/L of squalene, a model membrane-damaging lipophilic compound. This SQ strain had significantly decreased membrane rigidity, leading to increased cell lysis during fermentation. The SQ strain was engineered to restore membrane rigidity by activating the cell wall integrity (CWI) pathway, thereby further enhancing its squalene production efficiency. Maintenance of CWI was associated with improved squalene production, as shown by cell wall remodeling through regulation of Ecm33, a key regulator of the CWI pathway. Deletion of ECM33 in the SQ strain helped restore membrane rigidity and improve stress tolerance. Moreover, ECM33 deletion suppressed cell lysis and increased squalene production by approximately 12% compared to that by the parent SQ strain. Thus, this study shows that engineering of the yeast cell wall is a promising strategy for enhancing the physiological functions of industrial strains for production of lipophilic compounds.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae-Eung Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| |
Collapse
|
7
|
Wang J, Ding H, Zheng F, Li Y, Liu C, Niu C, Li Q. Physiological Changes of Beer Brewer's Yeast During Serial Beer Fermentation. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2018.1546030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huajian Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Wang J, Li M, Zheng F, Niu C, Liu C, Li Q, Sun J. Cell wall polysaccharides: before and after autolysis of brewer's yeast. World J Microbiol Biotechnol 2018; 34:137. [PMID: 30128783 DOI: 10.1007/s11274-018-2508-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
Brewer's yeast is used in production of beer since millennia, and it is receiving increased attention because of its distinct fermentation ability and other biological properties. During fermentation, autolysis occurs naturally at the end of growth cycle of yeast. Yeast cell wall provides yeast with osmotic integrity and holds the cell shape upon the cell wall stresses. The cell wall of yeast consists of β-glucans, chitin, mannoproteins, and proteins that cross linked with glycans and a glycolipid anchor. The variation in composition and amount of cell wall polysaccharides during autolysis in response to cell wall stress, laying significant impacts on the autolysis ability of yeast, either benefiting or destroying the flavor of final products. On the other hand, polysaccharides from yeast cell wall show outstanding health effects and are recommended to be used in functional foods. This article reviews the influence of cell wall polysaccharides on yeast autolysis, covering cell wall structure changings during autolysis, and functions and possible applications of cell wall components derived from yeast autolysis.
Collapse
Affiliation(s)
- Jinjing Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Mengqi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Feiyun Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Chengtuo Niu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Chunfeng Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, 214122, Jiangsu, China.
| | - Jinyuan Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|