1
|
El-Sayed AA, Abdelhady MM, Jaafari SA, Alanazi TM, Mohammed AS. Impact of Some Enzymatic Treatments on Acrylamide Content in Biscuits. Processes (Basel) 2023. [DOI: 10.3390/pr11041041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Since its discovery in many heat-treatment foods in 2002, many efforts have been made to reduce acrylamide levels in foods. Methods to reduce acrylamide levels by reducing Maillard reaction products have been considered. However, baking cookies produces acrylamide, a carcinogenic compound. This study aimed to use a new quantitative index and formula for L-asparaginase, glucose oxidase, their 1:1 blending enzymes, baker’s yeast, and green tea powder (0.5 g/kg wheat flour) at a new proposed temperature of 37 °C for 30 min to reduce acrylamide production in biscuits and bakery products using new indicators such as asparagine reduction (%), the asparagine/acrylamide ratio, acrylamide reduction (%), and the asparagine/reducing sugar ratio. The highest acrylamide concentrations were reduced from 865 mg/kg in the blank sample (BT0) to 260 and 215 mg/kg in the mixed enzyme powder (1:1) (BT3)- and BT4-treated samples, respectively. The biscuit samples treated with 0.5 g/kg L-asparaginase reduced the acrylamide levels by approximately 67.63%, while the BT3 samples showed acrylamide levels of 69.94% and asparagine levels of 68.75% and 47%, respectively, compared with percentage in the untreated sample (blank), 95%. This percentage was 54.16% for the BT4 samples. The results showed that acrylamide was formed during baking, and all treatment samples inhibited its formation, making it possible to produce foods with low levels of acrylamide in starchy foods in the food industry at 37 °C for 30 min and preserving the quality and nutritional value of the final product. It can be used as a specialty food or functional food and protects school-agechildren, as well as youth on campus, from approximately 70–80% of their daily intake of acrylamide.
Collapse
|
2
|
Pesce F, Ponzo V, Mazzitelli D, Varetto P, Bo S, Saguy IS. Strategies to Reduce Acrylamide Formation During Food Processing Focusing on Cereals, Children and Toddler Consumption: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2164896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Francesco Pesce
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Mazzitelli
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Paolo Varetto
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Simona Bo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - I. Sam Saguy
- Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Basıncı F, Mogol BA, Güler S, Gökmen V, Koksel H. Mitigation of acrylamide formation during malt processing. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Emadi A, Yousefi B, Eslami M, Abdolshahi A. Reduction of acrylamide formation in bread and fried potato products using probiotic microorganisms: a systematic review and dose–response meta-analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Mollakhalili-Meybodi N, Khorshidian N, Nematollahi A, Arab M. Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15627-15645. [PMID: 33548042 DOI: 10.1007/s11356-021-12775-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide is a water-soluble toxicant found in high-protein and carbohydrate-containing foods exposed to high temperature like bread as the staple foodstuff. This toxicant is mainly formed via Maillard reaction. The potential adverse effects of acrylamide especially possible carcinogenicity in human through dietary exposure necessitate its monitoring. Regarding the existence of its precursors in wheat bread formulation as well as extreme consumption of bread by most population and diversity of bread types, its acrylamide level needs to be investigated. The indicative value for acrylamide in wheat bread is set at 80 μg/kg. Consequently, its determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS), or capillary electrophoresis can be helpful considering both the risk assessment and quality control aspects. In this respect, methods based on LC-MS/MS show good recovery and within laboratory repeatability with a limit of detection of 3-20 μg/kg and limit of quantification of 10-50 μg/kg which is suitable for the immediate requirements for food product monitoring and calculation of consumer exposure.
Collapse
Affiliation(s)
- Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran.
| | - Masoumeh Arab
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Zhao X, Andersson M, Andersson R. A simplified method of determining the internal structure of amylopectin from barley starch without amylopectin isolation. Carbohydr Polym 2021; 255:117503. [PMID: 33436256 DOI: 10.1016/j.carbpol.2020.117503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
To determine the internal structure of barley starch without amylopectin isolation, whole starch was hydrolyzed using β-amylase to remove the linear amylose and obtain β-limit dextrins (β-LDs). The β-LDs were treated with extensive α-amylase to prepare α-limit dextrins (α-LDs), and the α-LDs were further hydrolyzed with β-amylase into building blocks. The chain-length distribution of β-LD and building block composition were analyzed by size-exclusion chromatography and anion-exchange chromatography. The internal structure of the barley whole starches had similar pattern to barley amylopectins analyzed by conventional methods. The starch of barley amo1-mutated varieties contained more short internal B-chains and less long internal B-chains than that of other varieties. The starch from amo1-mutated varieties had more large building blocks than that from waxy varieties. The simplified method presented in this study can effectively characterize starch internal structure that relates to physicochemical properties of starch, although some details of amylopectin structure are not assessable.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07, Uppsala, Sweden.
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-230 53, Alnarp, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
7
|
Malunga LN, Ames N, Khorshidi AS, Thandapilly SJ, Yan W, Dyck A, Waterer J, Malcolmson L, Cuthbert R, Sopiwnyk E, Scanlon MG. Association of asparagine concentration in wheat with cultivar, location, fertilizer, and their interaction. Food Chem 2020; 344:128630. [PMID: 33223298 DOI: 10.1016/j.foodchem.2020.128630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022]
Abstract
The need to produce wheat with low asparagine concentration is of great importance as a measure to mitigate acrylamide concentration in wheat-based products. The association of asparagine concentration in Canadian bread wheat with cultivar, growing location, fertilizer and their interaction were investigated. Wheat cultivars (8) were grown in 2 locations under 4 fertilizer treatments in triplicate (which consisted of two nitrogen rates (90 or 120 lbs/acre) with or without 15 lbs sulphur per acre). The asparagine concentration ranged from 168.9 to 1050 µg/g and was significantly affected by cultivar, location, and their interaction but not fertilizer treatment. Location and cultivar were responsible for 80% and 14% of the variation, respectively. Some cultivars were not affected by location and maintained their low asparagine accumulation trait. Thus, breeding strategies should aim to identify cultivars that are low asparagine accumulating and are stable across different growing environments.
Collapse
Affiliation(s)
- Lovemore Nkhata Malunga
- Richardson Center for Functional Foods and Nutraceuticals, Agriculture and Agri-Food Canada, Winnipeg, MB R3T 6C5, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB R3T 2N2, Canada
| | - Nancy Ames
- Richardson Center for Functional Foods and Nutraceuticals, Agriculture and Agri-Food Canada, Winnipeg, MB R3T 6C5, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB R3T 2N2, Canada.
| | - Ali Salimi Khorshidi
- Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB R3T 2N2, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Functional Foods and Nutraceuticals, Agriculture and Agri-Food Canada, Winnipeg, MB R3T 6C5, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB R3T 2N2, Canada
| | - Weikai Yan
- Agriculture and Agri-Food Canada, ON, K1A 0C6 Ottawa, Canada
| | - Adam Dyck
- Warbuton Canada, Winnipeg, MB R3C 4E2, Canada
| | | | | | - Richard Cuthbert
- Swift Current Research & Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute, Winnipeg, MB R3C 3G7, Canada
| | - Martin G Scanlon
- Department of Food and Human Nutritional Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
8
|
Shen Y, Chen G, Li Y. Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chem 2019. [DOI: 10.1002/cche.10154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry Kansas State University Manhattan Kansas
| | - Gengjun Chen
- Department of Grain Science and Industry Kansas State University Manhattan Kansas
| | - Yonghui Li
- Department of Grain Science and Industry Kansas State University Manhattan Kansas
| |
Collapse
|
9
|
Nasiri Esfahani B, Kadivar M, Shahedi M, Soleimanian-Zad S. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1904-1914. [PMID: 28952425 DOI: 10.1080/19440049.2017.1378444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study mainly focuses on a strategy for reducing acrylamide content in whole-wheat bread by combining lactobacilli and yeast in sourdough breadmaking. Combinations of sourdough (fermented dough using different Lactobacillus strains including Lactobacillus plantarum PTCC 1896 [probiotic], L. sakei DSM 20,017, L. rhamnosus DSM 20,021, and L. delbrueckii DSM 20,081) and yeast, in comparison with yeast alone, were used for breadmaking. The results showed that acrylamide levels in breads fermented using sourdough+yeast were in all cases much lower (6.9-20 μg/kg on a dry weight basis [d.b.]) than those in the yeast-only fermented bread (47.6 μg/kg d.b.). Significant (p < 0.05) correlations were also found between pH, total titratable acids (TTA) and lactic acid, and acrylamide content. Furthermore, the obtained results showed that the moisture content of dough directly influenced the formation of acrylamide in bread (r = 0.925, p < 0.0001). In addition, no significant correlations were observed between acrylamide content in breads and either the reducing sugar or free amino acid contents in dough samples. According to the different effects of Lactobacillus strains, it could be concluded that the acrylamide reducing potential of lactobacilli was strain-specific, with L. rhamnosus being the most effective. This suggests that sourdough fermentation with appropriate Lactobacillus strains can be used as an advantageous technology to reduce the acrylamide content of whole-wheat breads.
Collapse
Affiliation(s)
- Behnaz Nasiri Esfahani
- a Department of Food Science and Technology, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Mahdi Kadivar
- a Department of Food Science and Technology, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Mohammad Shahedi
- a Department of Food Science and Technology, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Sabihe Soleimanian-Zad
- a Department of Food Science and Technology, College of Agriculture , Isfahan University of Technology , Isfahan , Iran.,b Research Institute for Biotechnology and Bioengineering , Isfahan University of Technology , Isfahan , Iran
| |
Collapse
|
10
|
|
11
|
Dastmalchi F, Razavi S. Comparison of the impact ofLactobacillus caseiandLactobacillus rhamnosuson acrylamide reduction in flat and bulk bread. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- F. Dastmalchi
- University of Tehran, Department of Food Science, Engineering and Technology, 31585-11167, Karaj, Iran
- Standard Research Institute of Iran, Faculty of Food Industry and Agriculture, Department of Food Science and Technology, Karaj, Iran
| | - S.H. Razavi
- University of Tehran, Department of Food Science, Engineering and Technology, 31585-11167, Karaj, Iran
| |
Collapse
|
12
|
Dastmalchi F, Razavi SH, Faraji M, Labbafi M. Effect of Lactobacillus casei- casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:1531-9. [PMID: 27570278 PMCID: PMC4984696 DOI: 10.1007/s13197-015-2118-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/27/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
The aim of this study was the evaluation of fermentation by lactic acid bacteria (LAB) contains lactobacillus (L.) casei- casei and L. reuteri on acrylamide formation and physicochemical properties of the Iranian flat bread named, Sangak, and Bread roll. Sangak and Bread roll were made with whole and white wheat flour, respectively. Whole-wheat flour had upper content of protein, sugar, ash, fiber, damaged starch and the activity of amylase than the white wheat flour. After 24 h of fermentation, the pH values of the sourdoughs made from whole-wheat flour (3.00, 2.90) were lower, in compared to sourdoughs prepared from white wheat flour (3.60, 3.58). In addition, in Sangak bread, glucose, and fructose were completely utilized after fermentation, but in bread roll, the reduced sugar levels increased after fermentation and baking that represent microorganisms cannot be activated and utilized sugars. Acrylamide formation was impacted by pH of sourdough and total reducing sugar (r = 0.915, r = 0.885 respectively). Bread roll and Sangak bread were fermented by L. casei- casei contained lowest acrylamide content, in two bread types (219.1, 104.3 μg/kg respectively). As an important result, the acrylamide content of Sangak bread in all cases was lower than in the Bread roll.
Collapse
Affiliation(s)
- Farnaz Dastmalchi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O.Box 4111, Karaj, Postal code: 31585-11167 Iran
- Department of Food Science & Technology, Faculty of Food Industry and Agriculture, Standard Research Institute of Iran, Karaj, Iran
| | - Seyed Hadi Razavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O.Box 4111, Karaj, Postal code: 31585-11167 Iran
| | - Mohammad Faraji
- Department of Food Science & Technology, Faculty of Food Industry and Agriculture, Standard Research Institute of Iran, Karaj, Iran
| | - Mohsen Labbafi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O.Box 4111, Karaj, Postal code: 31585-11167 Iran
| |
Collapse
|
13
|
Jayakody LN, Lane S, Kim H, Jin YS. Mitigating health risks associated with alcoholic beverages through metabolic engineering. Curr Opin Biotechnol 2016; 37:173-181. [PMID: 26760759 DOI: 10.1016/j.copbio.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Epidemiological studies have established a positive relationship between the occurrence of cancer and consumption of alcoholic beverages. Metabolic engineering of brewing yeast to reduce potential carcinogenic compounds in alcoholic beverage is technically feasible as well as economically promising. This review presents the mechanisms of formation of potentially carcinogenic components in alcoholic beverages, such as formaldehyde, acetaldehyde, ethyl carbamate, acrylamide, and heavy metals, and introduces effective genetic perturbations to minimize the concentrations of these harmful components. As precise and effective genome editing tools for polyploid yeast are now available, we envision that yeast metabolic engineering might open up new research directions for improving brewing yeast in order to ensure product safety as well as to increase overall quality of alcoholic beverages.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephan Lane
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
14
|
Mousavinejad G, Rezaei K, Khodaiyan F. Reducing acrylamide in fried potato pancake using baker’s yeast, lactobacilli and microalgae. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2015. [DOI: 10.3920/qas2014.0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- G. Mousavinejad
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Chamran street, 31587-77871 Karaj, Iran
| | - K. Rezaei
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Chamran street, 31587-77871 Karaj, Iran
- Center of Excellence for Application of Modern Technologies for Producing Functional Foods and Drinks, University of Tehran, Chamran street, 31587-77871 Karaj, Iran
| | - F. Khodaiyan
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Chamran street, 31587-77871 Karaj, Iran
| |
Collapse
|
15
|
Forstova V, Belkova B, Riddellova K, Vaclavik L, Prihoda J, Hajslova J. Acrylamide formation in traditional Czech leavened wheat-rye breads and wheat rolls. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Pedreschi F, Mariotti MS, Granby K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:9-20. [PMID: 23939985 DOI: 10.1002/jsfa.6349] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 05/07/2023]
Abstract
Acrylamide (AA) is known as a neurotoxin in humans and it is classified as a probable human carcinogen by the International Agency of Research on Cancer. AA is produced as by-product of the Maillard reaction in starchy foods processed at high temperatures (>120 °C). This review includes the investigation of AA precursors, mechanisms of AA formation and AA mitigation technologies in potato, cereal and coffee products. Additionally, most relevant issues of AA risk assessment are discussed. New technologies tested from laboratory to industrial scale face, as a major challenge, the reduction of AA content of browned food, while still maintaining its attractive organoleptic properties. Reducing sugars such as glucose and fructose are the major contributors to AA in potato-based products. On the other hand, the limiting substrate of AA formation in cereals and coffee is the free amino acid asparagine. For some products the addition of glycine or asparaginase reduces AA formation during baking. Since, for potatoes, the limiting substrate is reducing sugars, increases in sugar content in potatoes during storage then introduce some difficulties and potentially quite large variations in the AA content of the final product. Sugars in potatoes may be reduced by blanching. Levels of AA in different foods show large variations and no general upper limit is easily applicable, since some formation will always occur. Current policy is that practical measures should be taken voluntarily to reduce AA formation in vulnerable foods since AA is considered a health risk at the concentrations found in foods.
Collapse
Affiliation(s)
- Franco Pedreschi
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago, Chile; ASIS-UC Interdisciplinary Research Program on Tasty and Healthy Foods, Pontificia Universidad Catoĺica de Chile, Santiago, Chile
| | | | | |
Collapse
|
17
|
Acrylamide exposure among Turkish toddlers from selected cereal-based baby food samples. Food Chem Toxicol 2013; 60:514-9. [DOI: 10.1016/j.fct.2013.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022]
|
18
|
|
19
|
|
20
|
Acrylamide formation and colour development in low-fat baked potato products as influenced by baking conditions and oil type. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1935-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, Bartkevics V. Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Liu Y, Ohm JB, Hareland G, Wiersma J, Kaiser D. Sulfur, Protein Size Distribution, and Free Amino Acids in Flour Mill Streams and Their Relationship to Dough Rheology and Breadmaking Traits. Cereal Chem 2011. [DOI: 10.1094/cchem-06-10-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ya Liu
- Dept. of Cereal & Food Sciences, North Dakota State University, Fargo, ND
| | - Jae-Bom Ohm
- USDA/ARS Red River Valley Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, North Dakota State University, Fargo, ND. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Gary Hareland
- USDA/ARS Red River Valley Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, North Dakota State University, Fargo, ND. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
- Corresponding author. Phone: 701-239-1412. Fax: 701-239-1377. E-mail:
| | - Jochum Wiersma
- Dept. of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN
| | - Daniel Kaiser
- Dept. of Soil, Water, & Climate, University of Minnesota, St. Paul, MN
| |
Collapse
|
23
|
Keramat J, LeBail A, Prost C, Jafari M. Acrylamide in Baking Products: A Review Article. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0495-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Capuano E, Ferrigno A, Acampa I, Serpen A, Açar ÖÇ, Gökmen V, Fogliano V. Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.03.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Zhang Y, Ren Y, Zhang Y. New Research Developments on Acrylamide: Analytical Chemistry, Formation Mechanism, and Mitigation Recipes. Chem Rev 2009; 109:4375-97. [DOI: 10.1021/cr800318s] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yiping Ren
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
26
|
Effects of frying conditions and yeast fermentation on the acrylamide content in you-tiao, a traditional Chinese, fried, twisted dough-roll. Food Res Int 2008. [DOI: 10.1016/j.foodres.2008.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Capuano E, Ferrigno A, Acampa I, Ait-Ameur L, Fogliano V. Characterization of the Maillard reaction in bread crisps. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0936-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Palazoglu TK, Gökmen V. Reduction of acrylamide level in french fries by employing a temperature program during frying. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6162-6166. [PMID: 18624439 DOI: 10.1021/jf073046l] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, the effect of employing an oil temperature program during frying on the acrylamide content of French fries was investigated. The frying conditions that could lead to lower acrylamide levels in French fries were first simulated by means of an experimentally validated frying model. Then, experiments were conducted to test the simulated conditions in real frying process. Different time/temperature combinations (4 min at 170 degrees C, 2 min at 170 degrees C + 2 min at 150 degrees C, 1 min at 170 degrees C + 3 min at 150 degrees C, 1 min at 190 degrees C + 3 min at 150 degrees C) were employed for frying potato strips (8.5 x 8.5 x 70 mm), and the resultant acrylamide levels were determined with a gas chromatography-mass spectrometry (GC-MS) method. The results indicated that acrylamide levels in French fries can be reduced by half if the final stage of the frying process employs a lower oil temperature. Therefore, the method appears to be an effective way of controlling the acrylamide level in the final product.
Collapse
Affiliation(s)
- T Koray Palazoglu
- Department of Food Engineering, University of Mersin, 33343 Ciftlikkoy, Mersin, Turkey
| | | |
Collapse
|
29
|
Friedman M, Levin CE. Review of methods for the reduction of dietary content and toxicity of acrylamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6113-6140. [PMID: 18624452 DOI: 10.1021/jf0730486] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Potentially toxic acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose in cereals, potatoes, and other plant-derived foods. This overview surveys and consolidates the following dietary aspects of acrylamide: distribution in food originating from different sources; consumption by diverse populations; reduction of the acrylamide content in the diet; and suppression of adverse effects in vivo. Methods to reduce adverse effects of dietary acrylamide include (a) selecting potato, cereal, and other plant varieties for dietary use that contain low levels of the acrylamide precursors, namely, asparagine and glucose; (b) removing precursors before processing; (c) using the enzyme asparaginase to hydrolyze asparagine to aspartic acid; (d) selecting processing conditions (pH, temperature, time, processing and storage atmosphere) that minimize acrylamide formation; (e) adding food ingredients (acidulants, amino acids, antioxidants, nonreducing carbohydrates, chitosan, garlic compounds, protein hydrolysates, proteins, metal salts) that have been reported to prevent acrylamide formation; (f) removing/trapping acrylamide after it is formed with the aid of chromatography, evaporation, polymerization, or reaction with other food ingredients; and (g) reducing in vivo toxicity. Research needs are suggested that may further facilitate reducing the acrylamide burden of the diet. Researchers are challenged to (a) apply the available methods and to minimize the acrylamide content of the diet without adversely affecting the nutritional quality, safety, and sensory attributes, including color and flavor, while maintaining consumer acceptance; and (b) educate commercial and home food processors and the public about available approaches to mitigating undesirable effects of dietary acrylamide.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | |
Collapse
|
30
|
Morales F, Capuano E, Fogliano V. Mitigation Strategies to Reduce Acrylamide Formation in Fried Potato Products. Ann N Y Acad Sci 2008; 1126:89-100. [DOI: 10.1196/annals.1433.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
|
32
|
Amrein TM, Andres L, Escher F, Amadò R. Occurrence of acrylamide in selected foods and mitigation options. ACTA ACUST UNITED AC 2008; 24 Suppl 1:13-25. [PMID: 17687696 DOI: 10.1080/02652030701242558] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acrylamide reduction in certain food products is an important issue for both the food industry and academic research institutions. The present paper summarises past and current research on the occurrence and reduction of acrylamide in potatoes, bakery products, almonds, olives and dried fruit. In potatoes, the control of reducing sugars, process temperature and moisture is imperative to limit acrylamide formation. In bakery products, free asparagine and the type of baking agent largely determine acrylamide formation and present the starting points for reduction. The application of asparaginase is promising in this respect because it acts only on the key precursor, asparagine, whereby the product character remains unchanged. The baking agent NH4HCO3 promotes acrylamide formation in sweet bakery but its replacement by NaHCO3 effectively decreases acrylamide concentrations. Temperature and free asparagine are the key factors for acrylamide formation in roasted almonds. Olives and dried fruit may contain acrylamide and large amounts of acrylamide can be formed upon heating these products, a phenomenon which needs further investigation.
Collapse
Affiliation(s)
- Thomas M Amrein
- Institute of Food Science and Nutrition, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
33
|
Effect of crust temperature and water content on acrylamide formation during baking of white bread: Steam and falling temperature baking. Lebensm Wiss Technol 2007. [DOI: 10.1016/j.lwt.2007.01.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|