1
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
2
|
Permal R, Chia T, Arena G, Fleming C, Chen J, Chen T, Chang WL, Seale B, Hamid N, Kam R. Converting avocado seeds into a ready to eat snack and analysing for persin and amygdalin. Food Chem 2023; 399:134011. [DOI: 10.1016/j.foodchem.2022.134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
|
3
|
Combined molecular and supramolecular structural insights into pasting behaviors of starches isolated from native and germinated waxy brown rice. Carbohydr Polym 2022; 283:119148. [DOI: 10.1016/j.carbpol.2022.119148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022]
|
4
|
Huang J, Qian J, Wang S, Li Y, Zhai X, Olajide TM, Shen GX, Liao X. Effect of selenium biofortification on bioactive compounds and antioxidant activity in germinated black soybean. J Food Sci 2022; 87:1009-1019. [PMID: 35122243 DOI: 10.1111/1750-3841.16014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Biofortification using inorganic selenium has become an effective strategy to enhance selenium content in crops. In the present study, the effects of selenium biofortification on the chemical composition and antioxidant capacity of black soybean (BS) during germination were studied. The contents of selenium, total sugar, vitamin C, γ-aminobutyric acid, total polyphenols, and total flavonoids in selenium biofortified germinated black soybeans (GBS-Se) significantly increased compared to germinated black soybeans (GBS). However, the contents of soluble protein, fat, and reducing sugar were decreased, while fatty acid composition was not significantly different between GBS and BS. HPLC analysis showed that 12 phenolic acids of all samples, which mainly existed in free forms. Their contents increased at low concentration of selenium and decreased along with the rise of selenium concentrations. The antioxidant activity of GBS-Se as analyzed by Pearson correlation analysis positively correlated with the accumulation of phenolic substances. Principal component analysis (PCA) showed that GBS and GBS-Se were significantly different from BS. Moreover, the physicochemical indexes of GBS showed regularly changes with increasing selenium content, and those of GBS-Se50 and GBS-Se75 were significantly different from GBS. The results provide a systematic evaluation on the effect of selenium fortification on the germination of seeds and useful information for the development of Se-enriched functional foods. PRACTICAL APPLICATION: The organic selenium black soybean (BS) produced by the germination method can be directly processed and eaten to improve human health. In addition, complexes of organic selenium, vitamin C, and γ-aminobutyric acid of germinated BS can be developed into functional substances and applied to food or health products as functional ingredient and/or natural antioxidant supplements.
Collapse
Affiliation(s)
- Junyi Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiana Qian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shanshan Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingqiu Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaolin Zhai
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Garry X Shen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xianyan Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Lee JJ, Kim S, Cho JH, Kyoung H, Lee S, Choe J, Liu Y, Ji P, Xiong X, Kim Y, Kim HB, Song M. Potential use of ground brown rice for weanling pigs. J Anim Sci 2021; 99:skab267. [PMID: 34558617 PMCID: PMC8525501 DOI: 10.1093/jas/skab267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
The purpose of the current study was to assess the effects of substituting corn with ground brown rice on growth performance, immune status, and gut microbiota in weanling pigs. Seventy-two weanling pigs (28 d old with 6.78 ± 0.94 kg body weight [BW]) were randomly allotted to two dietary treatments with six pens and six pigs (three barrows and gilts) per pen within a randomized complete block design. The control pigs were fed a typical diet for weanling pigs based on corn and soybean meal diet (control diet: CON), and the other pigs were fed a formulated diet with 100% replacement of corn with ground brown rice for 35d (treatment diet: GBR). Growth performance, immune status, and gut microbiota of weanling pigs were measured. The substitution of corn with GBR did not affect growth performance or diarrhea frequency. Additionally, there were no differences in white blood cell number, hematocrit, cortisol, C-reactive protein, and serum tumor necrosis factor-alpha levels between pigs fed CON or GBR for the first 2 wk after weaning. However, weanling pigs fed GBR had lower (P < 0.05) serum transforming growth factor-beta 1 level than those fed CON. Furthermore, weanling pigs fed GBR had increased (P < 0.05) relative abundance of phylum Firmicutes and genus Lactobacillus and Streptococcus and decreased (P < 0.05) relative abundance of phylum Bacteroidetes and genus Clostridium and Prevotella in the gut microbiota compared with those fed CON. In conclusion, there was no significant difference in growth performance when corn was replaced with ground brown rice in diets for weanling pigs. Furthermore, the substitution of corn with ground brown rice in weaning diet modulated immune status and gut microbiota of pigs by increasing beneficial microbial communities and reducing harmful microbial communities. Overall, ground brown rice-based diet is a potential alternative to corn-based diet without negative effects on growth performance, immune status, and gut microbiota changes of weanling pigs.
Collapse
Affiliation(s)
- Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jeehwan Choe
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Saleh ASM, Wang P, Wang N, Yang L, Xiao Z. Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Compr Rev Food Sci Food Saf 2019; 18:1070-1096. [DOI: 10.1111/1541-4337.12449] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed S. M. Saleh
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
- Dept. of Food Science and Technology, Faculty of AgricultureAssiut Univ. Assiut 71526 Egypt
| | - Peng Wang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Na Wang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Liu Yang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Zhigang Xiao
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| |
Collapse
|
8
|
Sookwong P, Mahatheeranont S. Some Strategies for Utilization of Rice Bran Functional Lipids and Phytochemicals. J Oleo Sci 2018; 67:669-678. [PMID: 29760331 DOI: 10.5650/jos.ess17257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rice bran contains a great amount of functional lipids and phytochemicals including γ-oryzanols, tocotrienols, and tocopherols. However, utilization of those compounds is limited and needs some proven guidelines for better implementation. We introduce some effective strategies for the utilization of rice functional lipids, including an introduction of pigmented rice varieties for better bioactive compounds, biofortification of rice tocotrienols, plasma technology for improving rice phytochemicals, supercritical CO2 extraction of high quality rice bran oil, and an example on the development of tocotrienol-fortified foods.
Collapse
Affiliation(s)
- Phumon Sookwong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University
| | - Sugunya Mahatheeranont
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University
| |
Collapse
|
9
|
Pal P, Singh N, Kaur P, Kaur A, Virdi AS, Parmar N. Comparison of Composition, Protein, Pasting, and Phenolic Compounds of Brown Rice and Germinated Brown Rice from Different Cultivars. Cereal Chem 2016. [DOI: 10.1094/cchem-03-16-0066-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Priyanka Pal
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar-143005, India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar-143005, India
| | - Parmeet Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar-143005, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar-143005, India
| | - Amardeep Singh Virdi
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar-143005, India
| | - Naincy Parmar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar-143005, India
| |
Collapse
|
10
|
Wang Y, Li M, Xu F, Chai L, Bao J, Shen S. Variation in Polyphenols, Tocols, γ-Aminobutyric Acid, and Antioxidant Properties in Whole Grain Rice (Oryza sativa L.) as Affected by Different Germination Time. Cereal Chem 2016. [DOI: 10.1094/cchem-08-15-0171-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yan Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China
| | - Mei Li
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China
| | - Lihong Chai
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China
| | - Shengquan Shen
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China
| |
Collapse
|
11
|
Shen S, Wang Y, Li M, Xu F, Chai L, Bao J. The effect of anaerobic treatment on polyphenols, antioxidant properties, tocols and free amino acids in white, red, and black germinated rice (Oryza sativa L.). J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Cáceres PJ, Martínez-Villaluenga C, Amigo L, Frias J. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:261-267. [PMID: 25086701 DOI: 10.1007/s11130-014-0433-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.
Collapse
Affiliation(s)
- Patricio J Cáceres
- Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo Velasco, km 30, 5 Vía Perimetral, Guayaquil, Ecuador
| | | | | | | |
Collapse
|