1
|
Peterson J, Santana AL, Cox S, Perez-Fajardo M, Covarrubias J, Perumal R, Bean S, Wu X, Wang W, Smolensky D. Impact of heat and high-moisture pH treatments on starch digestibility, phenolic composition, and cell bioactivity in sorghum ( Sorghum bicolor L. Moench) flour. Front Nutr 2024; 11:1428542. [PMID: 39176031 PMCID: PMC11338920 DOI: 10.3389/fnut.2024.1428542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Sorghum (Sorghum bicolor L. Moench), characterized by substantial genetic diversity, encompasses some lines rich in health-promoting polyphenols. Laboratory studies have demonstrated anticancer properties of sorghum phenolics; however, their presence may impact nutritional factors, such as digestible starch. The objective of this study was to determine the effects of pH and high-moisture heating on starch digestibility, phenolic profile, and anticancer activity in sorghum. High Phenolic sorghum flour line SC84 was combined with buffer solutions (pH 3, 4, 5, 7, and 8) and heated for 0, 10, 30, 60, or 120 min. Starch digestibility was assessed using the K-DSTRS kit from Megazyme. Changes in phenolic composition were analyzed using total phenolic content (TPC) and condensed tannin content (CTC) assays coupled with reversed phase high performance liquid chromatography (RP-HPLC) analysis. Anticancer potential against human colorectal cancer cells (HCT116 and SW480) was determined though cell viability assay. Results indicated a significant increase in total starch digestibility of sample after heating. Heating samples for 10 min did not significantly reduce TPC of samples. However, CTC was significantly reduced with heating time, while pH exhibited no significant effect on CTC. The measured 3-deoxyanthocyanidins experienced a significant decrease (p < 0.0001), while certain flavonoids increased significantly (p < 0.05) after heating for 30 min or longer. Notably, the 10 min heating duration minimally affected anticancer activity, whereas longer heat times diminished extract efficacy against human colorectal cancer cells. Alkaline pH levels significantly decreased anticancer activity, regardless of heating time. Importantly, heating sorghum for 10 min improved starch digestibility with minimal compromise to potential health benefits. These findings suggest promising implications for the development of high-phenolic sorghum products, and provide valuable insights to guide forthcoming animal and clinical studies. The demonstrated impact of wet-heating on increased starch digestibility, coupled with the preservation of phenolic content and bioactivity, underscores the potential of incorporating high-phenolic sorghum lines in future functional food formulations.
Collapse
Affiliation(s)
- Jaymi Peterson
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Adina L. Santana
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Sarah Cox
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Mayra Perez-Fajardo
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Jose Covarrubias
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Ramasamy Perumal
- Agricultural Research Center, Kansas State University, Hays, KS, United States
| | - Scott Bean
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Xiaorong Wu
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS, United States
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| |
Collapse
|
2
|
Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, Çoban N, Habyarimana E, Barutçular C, Cerit I, Ludidi N, Karaköy T, Aasim M, Chung YS, Nawaz MA, Hatipoğlu R, Kökten K, Sun HJ. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet 2023; 14:1150616. [PMID: 37252661 PMCID: PMC10213934 DOI: 10.3389/fgene.2023.1150616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Mehmet Bedir
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Nergiz Çoban
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ibrahim Cerit
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ndomelele Ludidi
- Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | | | - Rüştü Hatipoğlu
- Kırşehir Ahi Evran Universitesi Ziraat Fakultesi Tarla Bitkileri Bolumu, Kırşehir, Türkiye
| | - Kağan Kökten
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
3
|
Zhang L, Xu J, Ding Y, Cao N, Gao X, Feng Z, Li K, Cheng B, Zhou L, Ren M, Tao Y, Zou G. GWAS of grain color and tannin content in Chinese sorghum based on whole-genome sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:77. [PMID: 36952041 PMCID: PMC10036430 DOI: 10.1007/s00122-023-04307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Seventy-three QTL related to grain color and tannin content were identified in Chinese sorghum accessions, and a new recessive allelic variant of TAN2 gene was discovered. Sorghum is mainly used for brewing distilled liquors in China. Since grain tannins play an important role in liquor brewing, accurately understanding the relationship between grain color and tannin content can provide basis for selection standards of tannin sorghum. We resequenced a panel of 242 Chinese sorghum accessions and performed population structure and genome-wide association study (GWAS) to identify quantitative trait locus (QTL) affecting pericarp color, testa pigment, and tannin content. Phylogenetic analysis, principal component analysis (PCA), and admixture model were used to infer population structure. Two distinct genetic sub-populations were identified according to their corresponding northern and southern geographic origin. To investigate the genetic basis of natural variation in sorghum grain color, GWAS with 2,760,264 SNPs was conducted in four environments using multiple models (Blink, FarmCPU, GLM, and MLM). Seventy-three QTL were identified to be associated for the color of exocarp, mesocarp, testa, and tannin content on all chromosomes except chromosome 5, of which 47 might be novel QTL. Some important QTL were found to colocalize with orthologous genes in the flavonoid biosynthetic pathway from other plants, including orthologous of Arabidopsis (Arabidopsis thaliana) TT2, TT7, TT12, TT16 and AT5G41220 (GST), as well as orthologous of rice (Oryza sativa) MYB61 and OsbHLH025. Our investigation of the variation in grain color and tannin content in Chinese sorghum germplasm may help guide future sorghum breeding for liquor brewing.
Collapse
Affiliation(s)
- Liyi Zhang
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Jianxia Xu
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yanqing Ding
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ning Cao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xu Gao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Zhou Feng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Kuiying Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Bing Cheng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Lengbo Zhou
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuezhi Tao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Guihua Zou
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China.
| |
Collapse
|
4
|
Zhang L, Ding Y, Xu J, Gao X, Cao N, Li K, Feng Z, Cheng B, Zhou L, Ren M, Lu X, Bao Z, Tao Y, Xin Z, Zou G. Selection Signatures in Chinese Sorghum Reveals Its Unique Liquor-Making Properties. FRONTIERS IN PLANT SCIENCE 2022; 13:923734. [PMID: 35755652 PMCID: PMC9218943 DOI: 10.3389/fpls.2022.923734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Chinese sorghum (S. bicolor) has been a historically critical ingredient for brewing famous distilled liquors ever since Yuan Dynasty (749 ∼ 652 years BP). Incomplete understanding of the population genetics and domestication history limits its broad applications, especially that the lack of genetics knowledge underlying liquor-brewing properties makes it difficult to establish scientific standards for sorghum breeding. To unravel the domestic history of Chinese sorghum, we re-sequenced 244 Chinese sorghum lines selected from 16 provinces. We found that Chinese sorghums formed three distinct genetic sub-structures, referred as the Northern, the Southern, and the Chishui groups, following an obviously geographic pattern. These sorghum accessions were further characterized in liquor brewing traits and identified selection footprints associated with liquor brewing efficiency. An importantly selective sweep region identified includes several homologous genes involving in grain size, pericarp thickness, and architecture of inflorescence. Our result also demonstrated that pericarp strength rather than grain size determines the ability of the grains to resist repeated cooking during brewing process. New insight into the traits beneficial to the liquor-brewing process provides both a better understanding on Chinese sorghum domestication and a guidance on breeding sorghum as a multiple use crop in China.
Collapse
Affiliation(s)
- Liyi Zhang
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yanqing Ding
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jianxia Xu
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xu Gao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ning Cao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Kuiying Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Zhou Feng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing Cheng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lengbo Zhou
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiaochun Lu
- Institute of Sorghum Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Zhigui Bao
- Shanghai OE Biotech Co., Ltd., Shanghai, China
| | - Yuezhi Tao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, United States
| | - Guihua Zou
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants (Basel) 2022; 11:antiox11040794. [PMID: 35453479 PMCID: PMC9024522 DOI: 10.3390/antiox11040794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human
Collapse
|
6
|
Lee HS, Santana ÁL, Peterson J, Yucel U, Perumal R, De Leon J, Lee SH, Smolensky D. Anti-Adipogenic Activity of High-Phenolic Sorghum Brans in Pre-Adipocytes. Nutrients 2022; 14:nu14071493. [PMID: 35406112 PMCID: PMC9002988 DOI: 10.3390/nu14071493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is one of the leading public health problems that can result in life-threatening metabolic and chronic diseases such as cardiovascular diseases, diabetes, and cancer. Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop in the world and certain genotypes of sorghum have high polyphenol content. PI570481, SC84, and commercially available sumac sorghum are high-polyphenol genotypes that have demonstrated strong anti-cancer activities in previous studies. The objective of this study was to explore a potential anti-obesity use of extracts from sorghum bran in the differentiation of 3T3-L1 preadipocytes and to investigate cellular and molecular responses in differentiated adipocytes to elucidate related mechanisms. None of the four different sorghum bran extracts (PI570481, SC84, Sumac, and white sorghum as a low-polyphenol control) caused cytotoxicity in undifferentiated and differentiated 3T3-L1 cells at doses used in this study. Sorghum bran extracts (PI570481, SC84, and Sumac) reduced intracellular lipid accumulation and expression of adipogenic and lipogenic proteins in a dose-dependent manner in differentiated 3T3-L1 cells. The same polyphenol containing sorghum bran extracts also repressed production of reactive oxygen species (ROS) and MAPK signaling pathways and repressed insulin signaling and glucose uptake in differentiated 3T3-L1 cells. These data propose a potential use of high-phenolic sorghum bran for the prevention of obesity.
Collapse
Affiliation(s)
- Hee-Seop Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA;
| | - Ádina L. Santana
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66503, USA; (Á.L.S.); (J.P.); (U.Y.)
| | - Jaymi Peterson
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66503, USA; (Á.L.S.); (J.P.); (U.Y.)
| | - Umut Yucel
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66503, USA; (Á.L.S.); (J.P.); (U.Y.)
| | - Ramasamy Perumal
- Agricultural Research Center, Department of Agronomy, Kansas State University, Hays, KS 67601, USA;
| | - Joaquin De Leon
- Grain Quality and Structure Research Unit, United State Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA;
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA;
- Correspondence: (S.-H.L.); (D.S.); Tel.: +1-301-405-4532 (S.-H.L.); +1-785-537-5546 (D.S.)
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, United State Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, USA;
- Correspondence: (S.-H.L.); (D.S.); Tel.: +1-301-405-4532 (S.-H.L.); +1-785-537-5546 (D.S.)
| |
Collapse
|
7
|
Whole-genome resequencing of Sorghum bicolor and S. bicolor × S. halepense lines provides new insights for improving plant agroecological characteristics. Sci Rep 2022; 12:5556. [PMID: 35365708 PMCID: PMC8976056 DOI: 10.1038/s41598-022-09433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Sorghum (Sorghum bicolor L. (Moench)) is the world's fifth economically most important cereal and is a staple particularly in the semi-arid tropics of Africa and Asia. Genetic gains in this crop can benefit from wild relatives such as Sorghum halepense. Genome sequences including those from this wild species can boost the study of genome-wide and intraspecific variation for dissecting the genetic basis and improving important traits in sorghum. The whole-genome resequencing carried out in this work on a panel of 172 populations of S. bicolor and S. bicolor × S. halepense (SbxSh) advanced lines generated a total of 567,046,841 SNPs, 91,825,474 indels, 1,532,171 SVs, and 4,973,961 CNVs. Clearly, SbxSh accumulated more variants and mutations with powerful effects on genetic differentiation. A total of 5,548 genes private to SbxSh mapped to biological process GO enrichment terms; 34 of these genes mapped to root system development (GO: 0022622). Two of the root specific genes i.e., ROOT PRIMORDIUM DEFECTIVE 1 (RPD1; GeneID: 8054879) and RETARDED ROOT GROWTH (RRG, GeneID: 8072111), were found to exert direct effect on root growth and development. This is the first report on whole-genome resequencing of a sorghum panel that includes S. halepense genome. Mining the private variants and genes of this wild species can provide insights capable of boosting sorghum genetic improvement, particularly the perenniality trait that is compliant with agroecological practices, sustainable agriculture, and climate change resilience.
Collapse
|
8
|
Polyphenol Containing Sorghum Brans Exhibit an Anti-Cancer Effect in Apc Min/+ Mice Treated with Dextran Sodium Sulfate. Int J Mol Sci 2021; 22:ijms22158286. [PMID: 34361052 PMCID: PMC8347436 DOI: 10.3390/ijms22158286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is considered a high-risk cancer in developed countries. Its etiology is correlated with a high consumption of red meat and low consumption of plant-based foods, including whole grains. Sorghum bran is rich in polyphenols. This study aimed to determine whether different high-phenolic sorghum brans suppress tumor formation in a genetic CC rodent model and elucidate mechanisms. Tissue culture experiments used colorectal cancer cell lines SW480, HCT-116 and Caco-2 and measured protein expression, and protein activity. The animal model used in this study was APC Min+/mouse model combined with dextram sodium sulfate. High phenolic sorghum bran extract treatment resulted in the inhibition of proliferation and induced apoptosis in CC cell lines. Treatment with high phenolic sorghum bran extracts repressed TNF-α-stimulated NF-κB transactivation and IGF-1-stimulated PI3K/AKT pathway via the downregulation of β-catenin transactivation. Furthermore, high-phenolic sorghum bran extracts activated AMPK and autophagy. Feeding with high-phenolic sorghum bran for 6 weeks significantly suppressed tumor formation in an APC Min/+ dextran sodium sulfate promoted CC mouse model. Our data demonstrates the potential application of high-phenolic sorghum bran as a functional food for the prevention of CC.
Collapse
|
9
|
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. Sorghum breeding in the genomic era: opportunities and challenges. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1899-1924. [PMID: 33655424 PMCID: PMC7924314 DOI: 10.1007/s00122-021-03789-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Lu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Mural RV, Grzybowski M, Miao C, Damke A, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, Sigmon B, Kresovich S, Schnable JC. Meta-Analysis Identifies Pleiotropic Loci Controlling Phenotypic Trade-offs in Sorghum. Genetics 2021; 218:6294935. [PMID: 34100945 PMCID: PMC9335936 DOI: 10.1093/genetics/iyab087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy. Here we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum genotypes widely employed by the sorghum genetics community. Comparison of genome wide association studies conducted with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the genome and likely capture only 35-43% of potentially detectable loci controlling variation for traits scored in this population. While limited evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architecture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discoveries from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations.
Collapse
Affiliation(s)
- Ravi V Mural
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Marcin Grzybowski
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Chenyong Miao
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Alyssa Damke
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634 USA.,Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA
| | - Richard E Boyles
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Pee Dee Research and Education Center, Clemson University, Florence, SC 29532 USA
| | | | | | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Stephen Kresovich
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Feed the Future Innovation Lab for Crop Improvement Cornell University, Ithaca, NY 14850 USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
11
|
Lin H, Bean SR, Tilley M, Peiris KHS, Brabec D. Qualitative and Quantitative Analysis of Sorghum Grain Composition Including Protein and Tannins Using ATR-FTIR Spectroscopy. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01874-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Hassan S, Imran M, Ahmad MH, Khan MI, XU C, Khan MK, Muhammad N. Phytochemical characterization of ultrasound-processed sorghum sprouts for the use in functional foods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1762644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sadia Hassan
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
- Food Processing Centre, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Muhammad Imran
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haseeb Ahmad
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Department of Mathematics & Statistics, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Changmou XU
- Food Processing Centre, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Muhammad Kamran Khan
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Niaz Muhammad
- National Agriculture Education College, Kabul, Afghanistan
| |
Collapse
|
13
|
Habyarimana E, Dall’Agata M, De Franceschi P, Baloch FS. Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models. PLoS One 2019; 14:e0225979. [PMID: 31805171 PMCID: PMC6894842 DOI: 10.1371/journal.pone.0225979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
Sorghum is widely used for producing food, feed, and biofuel, and it is increasingly grown to produce grains rich in health-promoting antioxidants. The conventional use of grain color as a proxy to indirectly select against or for antioxidants polyphenols in sorghum grain was hampered by the lack of consistency between grain color and the expected antioxidants concentration. Marker-assisted selection built upon significant loci identified through linkage disequilibrium studies showed interesting potential in several plant breeding and animal husbandry programs, and can be used in sorghum breeding for consumer-tailored antioxidant production. The purpose of this work was therefore to conduct genome-wide association study of sorghum grain antioxidants using single nucleotide polymorphisms in a novel diversity panel of Sorghum bicolor landraces and S. bicolor × S. halepense recombinant inbred lines. The recombinant inbred lines outperformed landraces for antioxidant production and contributed novel polymorphism. Antioxidant traits were highly correlated and showed very high broad-sense heritability. The genome-wide association analysis uncovered 96 associations 55 of which were major quantitative trait loci (QTLs) explaining 15 to 31% of the observed antioxidants variability. Eight major QTLs localized in novel chromosomal regions. Twenty-four pleiotropic major effect markers and two novel functional markers (Chr9_1550093, Chr10_50169631) were discovered. A novel pleiotropic major effect marker (Chr1_61095994) explained the highest proportion (R2 = 27–31%) of the variance observed in most traits evaluated in this work, and was in linkage disequilibrium with a hotspot of 19 putative glutathione S-transferase genes conjugating anthocyanins into vacuoles. On chromosome four, a hotspot region was observed involving major effect markers linked with putative MYB-bHLH-WD40 complex genes involved in the biosynthesis of the polyphenol class of flavonoids. The findings in this work are expected to help the scientific community particularly involved in marker assisted breeding for the development of sorghum cultivars with consumer-tailored antioxidants concentration.
Collapse
Affiliation(s)
- Ephrem Habyarimana
- CREA Research Center for Cereal and Industrial Crops, Bologna, Italy
- * E-mail:
| | | | | | - Faheem S. Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
14
|
Habyarimana E, Lopez-Cruz M. Genomic Selection for Antioxidant Production in a Panel of Sorghum bicolor and S. bicolor × S. halepense Lines. Genes (Basel) 2019; 10:genes10110841. [PMID: 31653099 PMCID: PMC6895812 DOI: 10.3390/genes10110841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023] Open
Abstract
The purpose of this work was to assess the performance of four genomic selection (GS) models (GBLUP, BRR, Bayesian LASSO and BayesB) in 4 sorghum grain antioxidant traits (phenols, flavonoids, total antioxidant capacity and condensed tannins) using whole-genome SNP markers in a novel diversity panel of Sorghum bicolor lines and landraces and S. bicolor × S. halepense recombinant inbred lines. One key breeding problem modelled was predicting the performance in the antioxidant production of new and unphenotyped sorghum genotypes (validation set). The population was weakly structured (analysis of molecular variance, AMOVA R2 = 9%), showed a significant genetic diversity and expressed antioxidant traits with a good level of variability and high correlation. The S. bicolor × S. halepense lines outperformed Sorghum bicolor populations for all the antioxidants. The four GS models implemented in this work performed comparably across traits, with accuracy ranging from 0.49 to 0.58, and are considered high enough to sustain sorghum breeding for antioxidants production and allow important genetic gains per unit of time and cost. The results presented in this work are expected to contribute to GS implementation and the genetic improvement of sorghum grain antioxidants for different purposes, including the manufacture of health-promoting and specialty foods.
Collapse
Affiliation(s)
- Ephrem Habyarimana
- CREA Research Center for Cereals and Industrial Crops, via di Corticella 133-40128 Bologna, Italy.
| | - Marco Lopez-Cruz
- Crop, Soil, and Microbial Sciences Department, Michigan State University, 1066 Bogue St, East Lansing, MI 42824, USA.
| |
Collapse
|
15
|
Hassan S, Ahmad N, Ahmad T, Imran M, Xu C, Khan MK. Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sadia Hassan
- Faculty of Life Sciences, Institute of Home and Food Sciences Government College University Faisalabad Pakistan
- Department of Food Science and Technology, Food Processing Centre University of Nebraska Lincoln Nebraska
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences Government College University Faisalabad Pakistan
| | - Tanvir Ahmad
- Faculty of Physical Sciences, Department of Statistics Government College University Faisalabad Pakistan
| | - Muhammad Imran
- Faculty of Life Sciences, Institute of Home and Food Sciences Government College University Faisalabad Pakistan
| | - Changmou Xu
- Department of Food Science and Technology, Food Processing Centre University of Nebraska Lincoln Nebraska
| | - Muhammad Kamran Khan
- Faculty of Life Sciences, Institute of Home and Food Sciences Government College University Faisalabad Pakistan
| |
Collapse
|