1
|
Durmus Y, Atasoy AD, Atasoy AF. Mathematical optimization of multilinear and artificial neural network regressions for mineral composition of different tea types infusions. Sci Rep 2024; 14:18285. [PMID: 39112650 PMCID: PMC11306595 DOI: 10.1038/s41598-024-69149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The objective of this study was to investigate the change in mineral composition depending on tea variety, tea concentration, and steeping time. Four different tea varieties, black Ceylon (BC), black Turkish (BT), green Ceylon (GC), and green Turkish (GT), were used to produce teas at concentrations of 1, 2, and 3%, respectively. These teas were produced using 7 different steeping times: 2, 5, 10, 20, 30, 45, and 60 min. It was also aimed to optimize the regression equations utilizing these factors to identify parameters conducive to maximizing Zn, K, Cu, Mg, Ca, Na, and Fe levels; minimizing Al content, and maintaining Mn level at 5.3 mg/L. The optimal conditions for achieving a Mn content of 5.3 mg/L in black Turkish tea entailed steeping at a concentration of 1.94% for 11.4 min. Variations in K and Mg levels across teas were inconsistent with those observed for other minerals, whereas variations in Al, Cu, Fe, Mn, Na, and Zn levels exhibited a close relationship. Overall, mineral levels in tea can be predicted through regression analysis, and by mathematically optimizing the resultant equations, the requisite conditions for tea production can be determined to achieve maximum, minimum, or target mineral values.
Collapse
Affiliation(s)
- Yusuf Durmus
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Artvin Çoruh University, Artvin, Turkey.
| | - Ayse Dilek Atasoy
- Department of Environmental Engineering, Faculty of Engineering, Harran University, 63300, Sanliurfa, Turkey
| | - Ahmet Ferit Atasoy
- Department of Food Engineering, Faculty of Engineering, Harran University, 63300, Sanliurfa, Turkey
| |
Collapse
|
2
|
de Medeiros AF, de Queiroz JLC, Maciel BLL, de Araújo Morais AH. Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients 2022; 14:nu14030690. [PMID: 35277049 PMCID: PMC8838308 DOI: 10.3390/nu14030690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic low-grade inflammation is present in overweight and obesity, causing changes in several metabolic pathways. It impairs systemic functioning and positively feeds back the accumulation of more adipose tissue. Studies with hydrolyzed proteins and plant peptides have demonstrated a potential anti-inflammatory and immunomodulatory effect of these peptides. However, it is challenging and necessary to explore the mechanism of action of such molecules because understanding their effects depends on their structural characterizations. Furthermore, the structure might also give insights into safety, efficacy and efficiency, with a view of a possible health application. Thus, the present narrative review aimed to discuss the mechanisms of action of hydrolyzed proteins and plant peptides as anti-inflammatory agents in obesity. Keywords and related terms were inserted into databases for the search. Based on the studies evaluated, these biomolecules act by different pathways, favoring the reduction of inflammatory cytokines and adipokines and the polarization of macrophages to the M2 phenotype. Finally, as a future perspective, bioinformatics is suggested as a tool to help understand and better use these molecules considering their applicability in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Amanda Fernandes de Medeiros
- Postgraduate Biochemistry and Biology Molecular Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.d.M.); (J.L.C.d.Q.)
| | - Jaluza Luana Carvalho de Queiroz
- Postgraduate Biochemistry and Biology Molecular Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.d.M.); (J.L.C.d.Q.)
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Postgraduate Biochemistry and Biology Molecular Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.d.M.); (J.L.C.d.Q.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence: ; Tel.: +55-84-9910-61887
| |
Collapse
|
3
|
BOZDOGAN N, ORMANLI E, KUMCUOGLU S, TAVMAN S. Pear pomace powder added quinoa-based gluten-free cake formulations: effect on pasting properties, rheology, and product quality. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.39121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Kumari A, Garg M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr 2020; 7:6. [PMID: 32118025 PMCID: PMC7020197 DOI: 10.3389/fnut.2020.00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat is a major cereal crop providing energy and nutrients to the billions of people around the world. Gluten is a structural protein in wheat, that is necessary for its dough making properties, but it is responsible for imparting certain intolerances among some individuals, which are part of this review. Most important among these intolerances is celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and results in villous atrophy, inflammation and damage to intestinal lining in genetically liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen presenting cells. Celiac disease occurs due to presence of celiac disease eliciting epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated immune response occurs in individuals after inhalation or ingestion of wheat. Following a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is very challenging as none of wheat cultivar or related species stands safe for consumption. Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic, and chemical strategies have been worked upon to reduce the celiac disease epitopes and the gluten content in wheat. Currently, only 8.4% of total population is affected by wheat-related issues, while rest of population remains safe and should not remove wheat from the diet, based on false media coverage.
Collapse
Affiliation(s)
- Natasha Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Simran Bhatia
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Saloni Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
5
|
Celiac Antigenicity of Ancient Wheat Species. Foods 2019; 8:foods8120675. [PMID: 31842464 PMCID: PMC6963764 DOI: 10.3390/foods8120675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023] Open
Abstract
Ancient grains have gained renewed interest in the last few years due to their perceived nutritional benefits. The goal of this study was to examine the presence of celiac epitopes in different ancient grains and determine differences in the gliadin protein profile of such grains. To investigate celiac epitopes, an untargeted mass spectrometric method was used, and the gliadin protein profile was studied using reverse phase-HPLC. Our findings show that celiac epitopes can be detected in wheat-related ancient grains, such as einkorn, emmer, and Kamut, indicating that these ancient grains have the potential to elicit the immune response associated with celiac disease. Additionally, the results showed that the gliadin protein composition is significantly different between ancient grain species, which could result in varying functional properties in end-use applications.
Collapse
|
6
|
Zhou Z, Zhang B, Liu H, Liang X, Ma W, Shi Z, Yang S. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109562. [PMID: 31437726 DOI: 10.1016/j.ecoenv.2019.109562] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 05/27/2023]
Abstract
Presence of cadmium (Cd) in food poses serious risks to human health. Understanding the effects of zinc (Zn) on Cd absorption by crops could help provide a theoretical basis for the treatment with Zn on contaminated soils. In this study, two wheat varieties, differing in grain-Cd accumulation ability (L979, a Cd low-accumulation variety, and H27, a high-accumulation variety) were selected to investigate the effect of Zn addition on Cd toxicity. Cd was applied to nutrient solutions at 0 and 10 μM, and added Zn were 0, 50 and 100 μM. Zn supplements alleviated decreases in biomass induced by Cd toxicity for both varieties, and both varieties had different reduced concentrations of Cd in their shoots. Application of 50 μM Zn to H27 resulted in a 17% decrease in Cd concentrations. When treated with 100 μM Zn, only L979 showed a reduction in Cd concentration. The higher proportion of Cd in the soluble fraction was found in L979. In addition, ion-selective scanning at the root-surface indicated that Zn supplements reduced net root Cd2+ flux by 55% for L979, and 69% for H27. These mitigating effects of Zn in both varieties involved mechanisms related to photosynthesis, root growth, and antioxidant production. Additionally, both Zn available in the medium and absorbed in plant tissue causes antagonistic effects on Cd absorption for wheat. It seemed that vacuolar compartmentation could contribute Cd detoxification especially for low accumulation variety.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Biao Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Haitao Liu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Xiaodong Liang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenlian Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenya Shi
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Suqin Yang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
7
|
Nagai T, Takagi A, Kai N, Tanoue Y, Suzuki N. Development of acceptable high‐quality noodles using nonglutinous rice cultivarAkitakomachiflours. Cereal Chem 2019. [DOI: 10.1002/cche.10222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takeshi Nagai
- Graduate School of Agricultural Sciences Yamagata University Yamagata Japan
- The United Graduate School of Agricultural Sciences Iwate University Iwate Japan
- Graduate School Prince of Songkla University Songkhla Thailand
| | | | | | | | | |
Collapse
|
8
|
Simsek S, Budak B, Schwebach CS, Ovando‐Martínez M. Historical vs. modern hard red spring wheat: Analysis of the chemical composition. Cereal Chem 2019. [DOI: 10.1002/cche.10198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND USA
| | - Bilge Budak
- Department of Chemistry, School of Science Kocaeli University, Umuttepe Campus Kocaeli Turkey
| | | | - Maribel Ovando‐Martínez
- Department of Plant Sciences North Dakota State University Fargo ND USA
- Departamento de Investigaciones Científicas y Tecnológicas Universidad de Sonora Hermosillo Mexico
| |
Collapse
|