Reduction in pathogenic load of wheat by tempering with saline organic acid solutions at different seasonal temperatures.
Int J Food Microbiol 2019;
313:108381. [PMID:
31670167 DOI:
10.1016/j.ijfoodmicro.2019.108381]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023]
Abstract
As a raw agricultural commodity, wheat is exposed to microbial contamination; therefore, enteric pathogens may be among its microbiota creating a food safety risk in milled products. This research evaluates (1) the effectiveness of organic acids dissolved in saline solutions to reduce the counts of pathogenic microorganisms in soft and hard wheat, and also investigates the effect of seasonal temperature on (2) survivability of pathogens in wheat kernels and on (3) pathogen inactivation during tempering with saline organic acid solutions. Wheat samples were inoculated with cocktails of either 5 serovars of Salmonella enterica, 5 E. coli O157:H7 or 6 non-O157 Shiga toxin-producing E. coli (STEC) strains to achieve a concentration of ~7 log CFU/g. Inoculated samples were allowed to stand for 7-days at temperatures (2.0, 10.8, 24.2, 32 °C) corresponding to those experienced during winter, spring/fall, and summer (average and maximum) in the main wheat growing regions in the state of Nebraska, USA. Besides water, solutions containing acid (acetic or lactic 2.5% or 5.0% v/v) and NaCl (~26% w/v) were used for tempering the wheat to 15.0% (soft) and 15.5% (hard) moisture at the different seasonal temperatures. The survival of pathogenic microorganisms throughout the resting period, and before and after tempering was analyzed by plating samples on injury-recovery media. The survival rate of pathogenic microorganisms on wheat kernels was higher at temperatures experienced during the winter (2.0 °C) and spring/fall (10.8 °C) months. Regardless of tempering temperature, the initial pathogen load was reduced significantly by all solutions when compared to the control tempered with water (P ≤ .05). The combination of lactic acid (5.0%) and NaCl was the most effective treatment against Salmonella enterica, E. coli O157:H7 and non-O157 STEC, with average reduction values of 1.8, 1.8 and 1.6 log CFU/g for soft wheat and 2.6, 2.4 and 2.4 log CFU/g for hard wheat, respectively. Implementation of organic acids and NaCl in tempering water may have the potential to reduce the risk of pathogen contamination in milled products.
Collapse