1
|
Lv H, Tang X, Zhang J, Ma M, Li X, Zheng Z, Xu Y, Zhang L. Mechanism study on the enhancement of bile acid-binding capacity in corn by-product juice via Lactiplantibacillus plantarum HY127 fermentation. Food Chem X 2025; 25:102111. [PMID: 39830001 PMCID: PMC11742556 DOI: 10.1016/j.fochx.2024.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Hyperlipidemia is a common endocrine metabolic disease in humans. Long-term medications often have adverse effects, making the search for safer and more effective treatments crucial. This study aimed to explore the impacts and mechanisms of Lactiplantibacillus plantarum HY127 fermentation on enhancing bile acid-binding capacity (BABC). We fermented corn by-product juice (CBJ) by HY127 and investigated the BABC of HY127 bacterial cells and their metabolites. Our results indicated that HY127 cells (95.25 %) played a major role in enhancing BABC, with metabolites (31.50 %-66.41 %) also contributing. Compared to unfermented CBJ, the contents of phenolics, flavonoids, polysaccharides, and organic acids were significantly higher. Non-targeted metabolomics revealed upregulated amino acids, alkaloids, terpenoids, and other bioactive substances associated with BABC in the supernatant. This study confirmed that HY127 fermentation enhances the BABC of CBJ (increased by 32.02 %-78.76 %), providing a research foundation and technical reference for the development of LAB-fermented corn by-product beverages with hypolipidemic activities.
Collapse
Affiliation(s)
- Huanyong Lv
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
- Liaoning Agricultural Vocational and Technical College, Yingkou 115007, China
| | - Xiaohui Tang
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Jian Zhang
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Menghan Ma
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinyi Li
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhenjie Zheng
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Yunhe Xu
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| | - Lili Zhang
- School of Food and Health, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
2
|
Li H, Liu B, Bess K, Wang Z, Liang M, Zhang Y, Wu Q, Yang L. Impact of Low-Temperature Storage on the Microstructure, Digestibility, and Absorption Capacity of Cooked Rice. Foods 2022; 11:foods11111642. [PMID: 35681392 PMCID: PMC9180724 DOI: 10.3390/foods11111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the effects of low-temperature storage on the microstructural, absorptive, and digestive properties of cooked rice. Cooked rice was refrigerated and stored at 4 °C for 0.5, 1, 3, 5, and 7 days, as well as frozen and preserved at −20, −40, and −80 °C for 0.5, 1, 3, 5, 7, 14, 21, and 28 days. The results indicated that the stored rice samples generally exhibited a higher absorption capacity for oil, cholesterol, and glucose than the freshly cooked rice. In addition, after storage, the digestibility of the cooked rice declined, namely, the rapidly digestible starch (RDS) content and estimated glycemic index (eGI) decreased, whereas the slowly digestible starch (SDS) and resistant starch (RS) content increased. Moreover, the increment of the storage temperatures or the extension of storage periods led to a lower amylolysis efficiency. Scanning electron microscopy (SEM) analysis indicated that storage temperature and duration could effectively modify the micromorphology of the stored rice samples and their digestion. Moreover, microstructural differences after storage and during simulated intestinal digestion could be correlated to the variations in the absorption capacity and digestibility. The findings from this study will be useful in providing alternative storage procedures to prepare rice products with improved nutritional qualities and functional properties.
Collapse
Affiliation(s)
- Hui Li
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin 150001, China; (H.L.); (Y.Z.); (Q.W.)
| | - Bingxiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
| | - Kezia Bess
- Department of Chemistry, Faculty of Natural Sciences, University of Guyana, Turkeyen 999073, Guyana;
| | - Zhengxuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
| | - Mingcai Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
| | - Yan Zhang
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin 150001, China; (H.L.); (Y.Z.); (Q.W.)
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin 150001, China; (H.L.); (Y.Z.); (Q.W.)
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (B.L.); (Z.W.); (M.L.)
- Correspondence:
| |
Collapse
|
3
|
Islam MS, Sharif A, Kwan N, Tam KC. Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Mol Pharm 2022; 19:1248-1272. [PMID: 35333534 DOI: 10.1021/acs.molpharmaceut.2c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acids, the endogenous steroid nucleus containing signaling molecules, are responsible for the regulation of multiple metabolic processes, including lipoprotein and glucose metabolism to maintain homeostasis. Within our body, they are directly produced from their immediate precursors, cholesterol C (low-density lipoprotein C, LDL-C), through the enzymatic catabolic process mediated by 7-α-hydroxylase (CYP7A1). Bile acid sequestrants (BASs) or amphiphilic resins that are nonabsorbable to the human body (being complex high molecular weight polymers/electrolytes) are one of the classes of drugs used to treat hypercholesterolemia (a high plasma cholesterol level) or dyslipidemia (lipid abnormalities in the body); thus, they have been used clinically for more than 50 years with strong safety profiles as demonstrated by the Lipid Research Council-Cardiovascular Primary Prevention Trial (LRC-CPPT). They reduce plasma LDL-C and can slightly increase high-density lipoprotein C (HDL-C) levels, whereas many of the recent clinical studies have demonstrated that they can reduce glucose levels in patients with type 2 diabetes mellitus (T2DM). However, due to higher daily dosage requirements, lower efficacy in LDL-C reduction, and concomitant drug malabsorption, research to develop an "ideal" BAS from sustainable or natural sources with better LDL-C lowering efficacy and glucose regulations and lower side effects is being pursued. This Review discusses some recent developments and their corresponding efficacies as bile removal or LDL-C reduction of natural biopolymer (polysaccharide)-based compounds.
Collapse
Affiliation(s)
- Muhammad Shahidul Islam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Anjiya Sharif
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nathania Kwan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Wheat bran thermal treatment in a hot air oven does not affect the fermentation and colonisation process by human faecal microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
5
|
Urhan TK, Rempel HG, Meunier-Goddik L, Penner MH. Information Retrieval in Food Science Research: A Bibliographic Database Analysis. J Food Sci 2018; 83:2912-2922. [PMID: 30452780 DOI: 10.1111/1750-3841.14388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022]
Abstract
The aim of the present research was to ascertain the importance of electronic bibliographic database selection and multiple database usage during the information retrieval phase of research in the food sciences. Six commonly recommended databases were compared with respect to overall journal coverage and journal overlap. Databases were also evaluated with respect to coverage of food science-based journals and the extent of article coverage therein. A case study approach, focused on bile acid/dietary fiber interactions, was used to illustrate the ramifications of database selection/usage when dealing with specific research topics. Databases differed with respect to the breadth of disciplines covered, the total number of journals indexed, the number of food science discipline-specific journals indexed, and the number of articles included per indexed journal. All of the databases contained citations that were unique to the given database. The data resulting from the case study provide an example of the extent to which relevant information may be missed if pertinent databases are not mined. In the present case, over half of the articles retrieved on the focus research topic were unique to a single database. The combined data from this study point to the importance of thoughtful database selection and multiple database usage when comprehensively assessing knowledge in the food sciences. PRACTICAL APPLICATION: This paper provides insights into article database usage for food science-relevant information retrieval. Online information retrieval is an efficient way to assess current knowledge in any of the food science disciplines. Acquired knowledge in turn is the underpinning of effective problem solving; whether it be private sector- or academic/government-based research.
Collapse
Affiliation(s)
- Tuba Karaarslan Urhan
- Dept. of Food Science and Technology, Oregon State Univ., Corvallis, OR, 97331, U.S.A
| | | | | | - Michael H Penner
- Dept. of Food Science and Technology, Oregon State Univ., Corvallis, OR, 97331, U.S.A
| |
Collapse
|