1
|
Liu D, Ge X, Pan D, Zheng X, Zhou X. Bacillus subtilis B55 degraded the ferulic acid and p-coumaric acid and changed the soil bacterial community in soils. J Appl Microbiol 2024; 135:lxae243. [PMID: 39299920 DOI: 10.1093/jambio/lxae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
AIMS This study aimed to assess the effects of phenolic acid-degrading bacteria strains on phenolic acid content, plant growth, and soil bacterial community in phenolic acid-treated soils. METHODS AND RESULTS The strain of interest coded as B55 was isolated from cucumber root litter, and its degradation rates of ferulic acid and p-coumaric acid were 81.92% and 72.41% in Luria-Bertani solution, respectively, and B55 was identified as Bacillus subtilis. B55 had plant growth-promoting attributes, including solubilization of inorganic phosphate and production of siderophore and indole acetic acid. Both ferulic acid and p-coumaric acid significantly restrained an increase in cucumber seedling dry biomass, while the B55 inoculation not only completely counteracted the damage of phenolic acids to cucumber seedlings and decreased the content of ferulic acid and p-coumaric acid in soil, but also promoted cucumber seedlings growth. Amplicon sequencing found that B55 inoculation changed the cucumber rhizosphere bacterial community structure and promoted the enrichment of certain bacteria, such as Pseudomonas, Arthrobacter, Bacillus, Flavobacterium, Streptomyces, and Comamonas. CONCLUSIONS B55 not only promoted cucumber seedling growth, and decreased the content of ferulic acid and p-coumaric acid in soil, but it also increased the relative abundance of beneficial microorganisms in the cucumber rhizosphere.
Collapse
Affiliation(s)
- Dongli Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xin Ge
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Dandan Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Yactayo-Chang JP, Block AK. The impact of climate change on maize chemical defenses. Biochem J 2023; 480:1285-1298. [PMID: 37622733 DOI: 10.1042/bcj20220444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Climate change is increasingly affecting agriculture, both at the levels of crops themselves, and by altering the distribution and damage caused by insect or microbial pests. As global food security depends on the reliable production of major crops such as maize (Zea mays), it is vital that appropriate steps are taken to mitigate these negative impacts. To do this a clear understanding of what the impacts are and how they occur is needed. This review focuses on the impact of climate change on the production and effectiveness of maize chemical defenses, including volatile organic compounds, terpenoid phytoalexins, benzoxazinoids, phenolics, and flavonoids. Drought, flooding, heat stress, and elevated concentrations of atmospheric carbon dioxide, all impact the production of maize chemical defenses, in a compound and tissue-specific manner. Furthermore, changes in stomatal conductance and altered soil conditions caused by climate change can impact environmental dispersal and effectiveness certain chemicals. This can alter both defensive barrier formation and multitrophic interactions. The production of defense chemicals is controlled by stress signaling networks. The use of similar networks to co-ordinate the response to abiotic and biotic stress can lead to complex integration of these networks in response to the combinatorial stresses that are likely to occur in a changing climate. The impact of multiple stressors on maize chemical defenses can therefore be different from the sum of the responses to individual stressors and challenging to predict. Much work remains to effectively leverage these protective chemicals in climate-resilient maize.
Collapse
Affiliation(s)
- Jessica P Yactayo-Chang
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| | - Anna K Block
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| |
Collapse
|
3
|
Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis. World J Microbiol Biotechnol 2023; 39:101. [PMID: 36792836 DOI: 10.1007/s11274-023-03544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16 S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h- 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L- 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30 °C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Collapse
|
4
|
Din ARJM, Shadan NH, Rosli MA, Musa NF, Othman NZ. Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis.. [DOI: 10.21203/rs.3.rs-2149358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h− 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L− 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30°C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Collapse
|
5
|
Wang YS, Zheng W, Jiang N, Jin YX, Meng ZK, Sun MX, Zong YL, Xu T, Zhu J, Tan RX. Alteration of the Catalytic Reaction Trajectory of a Vicinal Oxygen Chelate Enzyme by Directed Evolution. Angew Chem Int Ed Engl 2022; 61:e202201321. [DOI: 10.1002/anie.202201321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Shuang Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Wan Zheng
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Nan Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 210023 China
| | - Yun Xia Jin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zi Kang Meng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Meng Xin Sun
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yu Liang Zong
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Tong Xu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 210023 China
| | - Jiapeng Zhu
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules School of Life Sciences Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Wang YS, Zheng W, Jiang N, Jin YX, Meng ZK, Sun MX, Zong YL, Xu T, Zhu J, Tan RX. Alteration of the Catalytic Reaction Trajectory of a Vicinal Oxygen Chelate Enzyme by Directed Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Shuang Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Wan Zheng
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Nan Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 210023 China
| | - Yun Xia Jin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zi Kang Meng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Meng Xin Sun
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yu Liang Zong
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Tong Xu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 210023 China
| | - Jiapeng Zhu
- School of Medicine and Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules School of Life Sciences Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Zhang H, Yang Y, Mei X, Li Y, Wu J, Li Y, Wang H, Huang H, Yang M, He X, Zhu S, Liu Y. Phenolic Acids Released in Maize Rhizosphere During Maize-Soybean Intercropping Inhibit Phytophthora Blight of Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:886. [PMID: 32849668 PMCID: PMC7399372 DOI: 10.3389/fpls.2020.00886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
Interspecies interactions play a key role in soil-borne disease suppression in intercropping systems. However, there are limited data on the underlying mechanisms of soil-borne Phytophthora disease suppression. Here, a field experiment confirmed the effects of maize and soybean intercropping on Phytophthora blight of soybean caused by Phytophthora sojae. Experimentally, the roots and root exudates of maize were found to attract P. sojae zoospores and inhibit their motility and the germination of cystospores. Furthermore, five phenolic acids (p-coumaric acid, cinnamic acid, p-hydroxybenzoic acid, vanillic acid, and ferulic acid) that were consistently identified in the root exudates and rhizosphere soil of maize were found to interfere with the infection behavior of P. sojae. Among them, cinnamic acid was associated with significant chemotaxis in zoospores, and p-coumaric acid and cinnamic acid showed strong antimicrobial activity against P. sojae. However, in the rhizosphere soil of soybean, only p-hydroxybenzoic acid, low concentrations of vanillic acid, and ferulic acid were identified. Importantly, the coexistence of five phenolic acids in the maize rhizosphere compared with three phenolic acids in the soybean rhizosphere showed strong synergistic antimicrobial activity against the infection behavior of P. sojae. In summary, the types and concentrations of phenolic acids in maize and soybean rhizosphere soils were found to be crucial factors for Phytophthora disease suppression in this intercropping system.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yuxin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- China France Plantomix Joint Laboratory, Yunnan Agricultural University, Kunming, China
| | - Ying Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yiwen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Huiling Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- China France Plantomix Joint Laboratory, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- China France Plantomix Joint Laboratory, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- China France Plantomix Joint Laboratory, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- China France Plantomix Joint Laboratory, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- China France Plantomix Joint Laboratory, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
9
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
10
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Zhou X, Wu F. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Sci Rep 2018; 8:4929. [PMID: 29563548 PMCID: PMC5862977 DOI: 10.1038/s41598-018-23406-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Soil microorganisms are key drivers of plant productivity in terrestrial ecosystems, yet controls on their diversities and abundances are not fully elucidated. Phenolic acids, released through plant root exudation and residues decomposition, are usually referred as autotoxins of several crops, including cucumber. In this study, effects of vanillic acid (VA) on cucumber rhizosphere microbial communities were investigated by treating cucumber seedlings with VA every two days for five times. Amplicon sequencing, PCR-denaturing gradient gel electrophoresis and quantitative PCR were used to analyzed the 16S rRNA genes of total bacterial, Pseudomonas and Bacillus spp. communities. Results showed that VA at 0.05 μmol g−1 soil changed total bacterial community diversity and composition. In particular, VA inhibited the relative abundances of genera with plant-beneficial potentials, such as Bacillus and Lysobacter spp. Moreover, VA changed Pseudomonas and Bacillus spp. community compositions by altering the number and/or relative abundances of their OTUs; and decreased Bacillus spp. community abundance at 0.02 to 0.2 μmol g−1 soil and Pseudomonas spp. community abundance at 0.2 μmol g−1 soil. Overall, VA changed cucumber seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities, which maybe be associated with the adverse effects of VA on cucumber growth under soil conditions.
Collapse
Affiliation(s)
- Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China. .,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| |
Collapse
|
12
|
Specialized plant biochemistry drives gene clustering in fungi. ISME JOURNAL 2018; 12:1694-1705. [PMID: 29463891 DOI: 10.1038/s41396-018-0075-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 01/31/2023]
Abstract
The fitness and evolution of prokaryotes and eukaryotes are affected by the organization of their genomes. In particular, the physical clustering of genes can coordinate gene expression and can prevent the breakup of co-adapted alleles. Although clustering may thus result from selection for phenotype optimization and persistence, the impact of environmental selection pressures on eukaryotic genome organization has rarely been systematically explored. Here, we investigated the organization of fungal genes involved in the degradation of phenylpropanoids, a class of plant-produced secondary metabolites that mediate many ecological interactions between plants and fungi. Using a novel gene cluster detection method, we identified 1110 gene clusters and many conserved combinations of clusters in a diverse set of fungi. We demonstrate that congruence in genome organization over small spatial scales is often associated with similarities in ecological lifestyle. Additionally, we find that while clusters are often structured as independent modules with little overlap in content, certain gene families merge multiple modules into a common network, suggesting they are important components of phenylpropanoid degradation strategies. Together, our results suggest that phenylpropanoids have repeatedly selected for gene clustering in fungi, and highlight the interplay between genome organization and ecological evolution in this ancient eukaryotic lineage.
Collapse
|
13
|
Shalaby S, Larkov O, Lamdan NL, Goldshmidt-Tran O, Horwitz BA. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ Microbiol 2016; 18:4188-4199. [PMID: 27631532 DOI: 10.1111/1462-2920.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022]
Abstract
Plant aromatic compounds provide signals and a nutrient source to pathogens, and also act as stressors. Structure-activity relationships suggest two pathways sensing these compounds in the maize pathogen Cochliobolus heterostrophus, one triggering a stress response, and one inducing enzymes for their degradation. Focusing on the stress pathway, we found that ferulic acid causes rapid appearance of TUNEL-positive nuclei, dispersion of histone H1:GFP, hyphal shrinkage, and eventually membrane damage. These hallmarks of programmed cell death (PCD) were not seen upon exposure to caffeic acid, a very similar compound. Exposure to ferulic acid dephosphorylated two MAP kinases: Hog1 (stress activated) and Chk1 (pathogenicity related), while increasing phosphorylation of Mps1 (cell integrity related). Mutants lacking Hog1 or Chk1 are hypersensitive to ferulic acid while Mps1 mutants are not. These results implicate three MAPK pathways in the stress response. Ferulic acid and the antifungal fludioxonil have opposite additive effects on survival and on dephosphorylation of Hog1, which is thus implicated in survival. The results may explain why some fungal pathogens of plants undergo cell death early in host invasion, when phenolics are released from plant tissue.
Collapse
Affiliation(s)
- Samer Shalaby
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Olga Larkov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Netta-Li Lamdan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| |
Collapse
|
14
|
Shalaby S, Horwitz BA. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions. Curr Genet 2014; 61:347-57. [PMID: 25407462 DOI: 10.1007/s00294-014-0458-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion, Israel Institute of Technology, 3200000, Haifa, Israel
| | | |
Collapse
|
15
|
Shalaby S, Larkov O, Lamdan NL, Horwitz BA. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus. FEMS Microbiol Lett 2013; 350:83-9. [PMID: 24164316 DOI: 10.1111/1574-6968.12314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022] Open
Abstract
The transcription factors ChAP1 and Skn7 of the maize pathogen Cochliobolus heterostrophus are orthologs of Yap1 and Skn7 in yeast, where they are predicted to work together in a complex. Previous work showed that in C. heterostrophus, as in yeast, ChAP1 accumulates in the nucleus in response to reactive oxygen species (ROS). The expression of genes whose products counteract oxidative stress depends on ChAP1, as shown by impaired ability of a Δchap1 mutant to induce these 'antioxidant' genes. In this study, we found that under oxidative stress, antioxidant gene expression is also partially impaired in the Δskn7 mutant but to a milder extent than in the Δchap1 mutant, whereas in the double mutant - Δchap1-Δskn7 - none of the tested genes was induced, with the exception of one catalase gene, CAT2. Both single mutants are capable of infecting the plant, showing similar virulence to the WT. The double mutant, however, showed clearly decreased virulence, pointing to additive contributions of ChAP1 and Skn7. Possible mechanisms are discussed, including additive regulation of gene expression by oxidative stress.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
16
|
Ronen M, Shalaby S, Horwitz BA. Role of the transcription factor ChAP1 in cytoplasmic redox homeostasis: imaging with a genetically encoded sensor in the maize pathogen Cochliobolus heterostrophus. MOLECULAR PLANT PATHOLOGY 2013; 14:786-90. [PMID: 23745603 PMCID: PMC6638657 DOI: 10.1111/mpp.12047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The redox-sensitive transcription factor ChAP1 [Cochliobolus heterostrophus YAP1 (Yeast Activator Protein 1) orthologue] of C. heterostrophus is required for oxidative stress tolerance. It is not known, however, to what extent the intracellular redox state changes on exposure of the fungus to oxidants, and whether ChAP1 is involved in the return of the cell to redox homeostasis. In order to answer these questions, we expressed a ratiometric redox-sensitive fluorescent protein sensor, pHyper, in C. heterostrophus. The fluorescence ratio was sensitive to extracellular hydrogen peroxide (H2O2) concentrations that had been shown previously to inhibit the germination of conidia and growth of the pathogen in culture. chap1 mutants showed a slower return to redox homeostasis than the wild-type on exposure to H2O2. Plant extracts that mimic oxidants in their ability to promote nuclear retention of ChAP1 reduced, rather than oxidized, the fungal cells. This result is consistent with other data suggesting that ChAP1 responds to plant-derived signals other than oxidants. pHyper should be a useful reporter of the intracellular redox state in filamentous fungi.
Collapse
Affiliation(s)
- Mordechai Ronen
- Department of Plant Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
17
|
Wells T, Ragauskas AJ. Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 2012; 30:627-37. [DOI: 10.1016/j.tibtech.2012.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/18/2023]
|