1
|
Wang Y, Wang K, Yang Q, Wang Z, Su Y, Chen X, Zhang H. Chromatin accessibility profile and the role of PeAtf1 transcription factor in the postharvest pathogen Penicillium expansum. HORTICULTURE RESEARCH 2025; 12:uhae264. [PMID: 39802737 PMCID: PMC11718402 DOI: 10.1093/hr/uhae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/17/2024] [Indexed: 01/16/2025]
Abstract
Gene transcription is governed by a complex regulatory system involving changes in chromatin structure, the action of transcription factors, and the activation of cis-regulatory elements. Postharvest fruits are threatened by Penicillium expansum, a leading causal agent of blue mold disease and one of the most economically significant postharvest pathogens worldwide. However, information on its transcription regulatory mechanism is lagging. Here, we conducted an assay for transposase accessible chromatin sequencing (ATAC-seq) for P. expansum during vegetative growth and infection phase and then studied the function of a basic leucine zipper (bZIP) transcription factor PeAtf1. Results highlighted the role of promoter regions in gene transcription and the significant difference in P. expansum between these two phases. Six footprint-supported cis-regulatory elements of active transcription factors were obtained and analyzed. We then identified a homolog of the bZIP regulator Atf1, PeAtf1, and found it positively regulated vegetative growth, reproduction, and osmotic stress response in P. expansum. Furthermore, PeAtf1 deletion enhanced the fungus's tolerance to oxidative, cell wall, and membrane stresses, which might contribute to the virulence of deletion mutants in apple fruits, leading to similar pathogenicity between mutants and the wild type. Overall, this study provides new insights into the transcription regulatory profile of P. expansum, aiding in the future development of strategies to control P. expansum.
Collapse
Affiliation(s)
- Yiran Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhaoting Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xifei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
2
|
Wang F, Xi Z, Wang M, Wang L, Wang J. Genome-wide chromatin accessibility reveals transcriptional regulation of heterosis in inter-subspecific hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2331-2348. [PMID: 38976378 DOI: 10.1111/tpj.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Crop and Nuclear Technology Utilization, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Jia Y, Xu Y, Wang B, Guo L, Guo M, Che X, Ye K. The tissue-specific chromatin accessibility landscape of Papaver somniferum. Front Genet 2023; 14:1136736. [PMID: 37007951 PMCID: PMC10050356 DOI: 10.3389/fgene.2023.1136736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yu Xu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Li Guo
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mengyao Guo
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofei Che
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Genome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Faculty of Science, Leiden University, Leiden, Netherlands
- *Correspondence: Kai Ye,
| |
Collapse
|
5
|
Zhang Z, Lin L, Chen H, Ye W, Dong S, Zheng X, Wang Y. ATAC-Seq Reveals the Landscape of Open Chromatin and cis-Regulatory Elements in the Phytophthora sojae Genome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:301-310. [PMID: 35037783 DOI: 10.1094/mpmi-11-21-0291-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| |
Collapse
|
6
|
Genome-Wide Identification and Functional Characterization of CCHC-Type Zinc Finger Genes in Ustilaginoidea virens. J Fungi (Basel) 2021; 7:jof7110947. [PMID: 34829234 PMCID: PMC8619310 DOI: 10.3390/jof7110947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is a serious disease of rice (Oryza sativa), severely reducing plant mass and yields worldwide. We performed genome-wide analysis of the CCHC-type zinc-finger transcription factor family in this pathogen. We identified and functionally characterized seven UvCCHC genes in U. virens. The deletion of various UvCCHC genes affected the stress responses, vegetative growth, conidiation, and virulence of U. virens. ∆UvCCHC5 mutants infected rice spikelets normally but could not form smut balls. Sugar utilization experiments showed that the ∆UvCCHC5 mutants were defective in the utilization of glucose, sucrose, lactose, stachyose, and trehalose. Deletion of UvCCHC5 did not affect the expression of rice genes associated with grain filling, as revealed by RT-qPCR. We propose that the ∆UvCCHC5 mutants are impaired in transmembrane transport, and the resulting nutrient deficiencies prevent them from using nutrients from rice to form smut balls. RNA-seq data analysis indicated that UvCCHC4 affects the expression of genes involved in mitochondrial biogenesis, ribosomes, transporters, and ribosome biogenesis. These findings improve our understanding of the molecular mechanism underlying smut ball formation in rice by U. virens.
Collapse
|