1
|
Wang W, Long Y. A review of biocontrol agents in controlling late blight of potatoes and tomatoes caused by Phytophthora infestans and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:4715-4725. [PMID: 37555293 DOI: 10.1002/ps.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Langlands-Perry C, Cuenin M, Bergez C, Krima SB, Gélisse S, Sourdille P, Valade R, Marcel TC. Resistance of the Wheat Cultivar ‘Renan’ to Septoria Leaf Blotch Explained by a Combination of Strain Specific and Strain Non-Specific QTL Mapped on an Ultra-Dense Genetic Map. Genes (Basel) 2021; 13:genes13010100. [PMID: 35052440 PMCID: PMC8774678 DOI: 10.3390/genes13010100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative resistance is considered more durable than qualitative resistance as it does not involve major resistance genes that can be easily overcome by pathogen populations, but rather a combination of genes with a lower individual effect. This durability means that quantitative resistance could be an interesting tool for breeding crops that would not systematically require phytosanitary products. Quantitative resistance has yet to reveal all of its intricacies. Here, we delve into the case of the wheat/Septoria tritici blotch (STB) pathosystem. Using a population resulting from a cross between French cultivar Renan, generally resistant to STB, and Chinese Spring, a cultivar susceptible to the disease, we built an ultra-dense genetic map that carries 148,820 single nucleotide polymorphism (SNP) markers. Phenotyping the interaction was done with two different Zymoseptoria tritici strains with contrasted pathogenicities on Renan. A linkage analysis led to the detection of three quantitative trait loci (QTL) related to resistance in Renan. These QTL, on chromosomes 7B, 1D, and 5D, present with an interesting diversity as that on 7B was detected with both fungal strains, while those on 1D and 5D were strain-specific. The resistance on 7B was located in the region of Stb8 and the resistance on 1D colocalized with Stb19. However, the resistance on 5D was new, so further designated Stb20q. Several wall-associated kinases (WAK), nucleotide-binding and leucine-rich repeats (NB-LRR) type, and kinase domain carrying genes were present in the QTL regions, and some of them were expressed during the infection. These results advocate for a role of Stb genes in quantitative resistance and for resistance in the wheat/STB pathosystem being as a whole quantitative and polygenic.
Collapse
Affiliation(s)
- Camilla Langlands-Perry
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
- ARVALIS Institut du Végétal, 91720 Boigneville, France;
| | - Murielle Cuenin
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Christophe Bergez
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Safa Ben Krima
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Sandrine Gélisse
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Pierre Sourdille
- Université Clermont–Auvergne, INRAE, UMR GDEC, 63000 Clermont-Ferrand, France;
| | - Romain Valade
- ARVALIS Institut du Végétal, 91720 Boigneville, France;
| | - Thierry C. Marcel
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
- Correspondence:
| |
Collapse
|
3
|
Rogozhin EA, Vasilchenko AS, Barashkova AS, Smirnov AN, Zavriev SK, Demushkin VP. Peptide Extracts from Seven Medicinal Plants Discovered to Inhibit Oomycete Phytophthora infestans, a Causative Agent of Potato Late Blight Disease. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1294. [PMID: 33007947 PMCID: PMC7599828 DOI: 10.3390/plants9101294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
We report the inhibitory effect of peptide extracts obtained from seven medicinal plants against a causative agent of late blight disease Phytophthora infestans. We find that all the extracts possess inhibitory activity toward the zoospores output, zoosporangium germination, and the development of P. infestans on potato disc tubers at different quantitative levels. Based on the biological effects detected, an extract of common horsetail (Equisetum arvense) biomass is recognized as the most effective and is selected for further structural analysis. We perform a combination of amino acid analysis and MALDI-TOF mass spectrometry, which reveal the presence of Asn/Asp- and Gln/Glu-rich short peptides with molecular masses in the range of 500-900 Da and not exceeding 1500 Da as the maximum. Analytical anion-exchange HPLC is successfully applied for separation of the peptide extract from common horsetail (E. arvense). We collect nine dominant components that are combined in two groups with differences in retention times. The N-terminal amino acid sequence of the prevalent compounds after analytical ion-exchange HPLC allows us to identify them as peptide fragments of functionally active proteins associated with photosynthesis, aquatic transport, and chitin binding. The anti-oomycete effects may be associated with the conversion of ribulose-1,5-bisphosphate carboxylase/oxygenase to produce a number of biologically active anionic peptides with possible regulatory functions. These data inform our knowledge regarding biologically active peptide fragments; they are the components of programmed or induced proteolysis of plant proteins and can realize secondary antimicrobial functions.
Collapse
Affiliation(s)
- Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 St.-Petersburg-Pushkin, Russia
| | - Alexey S. Vasilchenko
- Institute of Biological and Agricultural Biology (X-Bio) Tyumen State University, Russian Federation, 625003 Tyumen, Russia;
| | - Anna S. Barashkova
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
- Institute of Biological and Agricultural Biology (X-Bio) Tyumen State University, Russian Federation, 625003 Tyumen, Russia;
| | - Alexey N. Smirnov
- Timiryazev Russian State Agrarian University, 127550 Moscow, Russia;
| | - Sergey K. Zavriev
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
| | - Vladimir P. Demushkin
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
| |
Collapse
|
4
|
Martin RL, Le Boulch P, Clin P, Schwarzenberg A, Yvin JC, Andrivon D, Nguema-Ona E, Val F. A comparison of PTI defense profiles induced in Solanum tuberosum by PAMP and non-PAMP elicitors shows distinct, elicitor-specific responses. PLoS One 2020; 15:e0236633. [PMID: 32785249 PMCID: PMC7423108 DOI: 10.1371/journal.pone.0236633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
The induction of general plant defense responses following the perception of external elicitors is now regarded as the first level of the plant immune response. Depending on the involvement or not of these molecules in pathogenicity, this induction of defense is called either Pathogen-Associated Molecular Pattern (PAMP) Triggered Immunity or Pattern Triggered Immunity-both abbreviated to PTI. Because PTI is assumed to be a widespread and stable form of resistance to infection, understanding the mechanisms driving it becomes a major goal for the sustainable management of plant-pathogen interactions. However, the induction of PTI is complex. Our hypotheses are that (i) the recognition by the plant of PAMPs vs non-PAMP elicitors leads to specific defense profiles and (ii) the responses specifically induced by PAMPs target critical life history traits of the pathogen that produced them. We thus analyzed, using a metabolomic approach coupled with transcriptomic and hormonal analyses, the defense profiles induced in potato foliage treated with either a Concentrated Culture Filtrate (CCF) from Phytophthora infestans or two non-PAMP preparations, β-aminobutyric acid (BABA) and an Ulva spp. Extract, used separately. Each elicitor induced specific defense profiles. CCF up-regulated sesquiterpenes but down-regulated sterols and phenols, notably α-chaconine, caffeoyl quinic acid and rutin, which decreased spore production of P. infestans in vitro. CCF thus induces both defense and counter-defense responses. By contrast, the Ulva extract triggered the synthesis of a large-spectrum of antimicrobial compounds through the phenylpropanoid/flavonoid pathways, while BABA targeted the primary metabolism. Hence, PTI can be regarded as a heterogeneous set of general and pathogen-specific responses triggered by the molecular signatures of each elicitor, rather than as a uniform, non-specific and broad-spectrum set of general defense reactions.
Collapse
Affiliation(s)
- Rafaela Lopes Martin
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Pauline Le Boulch
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
| | - Pauline Clin
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
| | - Adrián Schwarzenberg
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Didier Andrivon
- INRAE, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Florence Val
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| |
Collapse
|