1
|
Duff-Farrier CRA, Candresse T, Bailey AM, Boonham N, Foster GD. Evidence for different, host-dependent functioning of Rx against both wild-type and recombinant Pepino mosaic virus. MOLECULAR PLANT PATHOLOGY 2016; 17:120-6. [PMID: 25787776 PMCID: PMC6638469 DOI: 10.1111/mpp.12256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The potato Rx gene provides resistance against Pepino mosaic virus (PepMV) in tomato; however, recent work has suggested that the resistance conferred may not be durable. Resistance breaking can probably be attributed to multiple mutations observed to accumulate in the capsid protein (CP) region of resistance-breaking isolates, but this has not been confirmed through directed manipulation of an infectious PepMV clone. The present work describes the introduction of two specific mutations, A-T78 and A-T114, into the coat protein minimal elicitor region of an Rx-controlled PepMV isolate of the EU genotype. Enzyme-linked immunosorbent assay (ELISA) and phenotypic evaluation were conducted in three Rx-expressing and wild-type solanaceous hosts: Nicotiana benthamiana, Nicotiana tabacum and Solanum lycopersicum. Mutation A-T78 alone was sufficient to confer Rx-breaking activity in N. benthamiana and S. lycopersicum, whereas mutation A-T114 was found to be associated, in most cases, with a secondary A-D100 mutation to break Rx-mediated resistance in S. lycopersicum. These results suggest that the need for a second, fitness-restoring mutation may be dependent on the PepMV mutant under consideration. Both mutations conferred Rx breaking in S. lycopersicum, whereas neither conferred Rx breaking in N. tabacum and only A-T78 allowed Rx breaking in N. benthamiana, suggesting that Rx may function in a different manner depending on the genetic background in which it is present.
Collapse
Affiliation(s)
- Celia R A Duff-Farrier
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, CS 20032, 33882, Villenave d'Ornon Cedex, France
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Neil Boonham
- The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK
| | - Gary D Foster
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
2
|
Rothan C, Just D, Fernandez L, Atienza I, Ballias P, Lemaire-Chamley M. Culture of the Tomato Micro-Tom Cultivar in Greenhouse. Methods Mol Biol 2016; 1363:57-64. [PMID: 26577781 DOI: 10.1007/978-1-4939-3115-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France. .,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Lucie Fernandez
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Isabelle Atienza
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Patricia Ballias
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| |
Collapse
|
3
|
Qiu A, Liu Z, Li J, Chen Y, Guan D, He S. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids. FRONTIERS IN PLANT SCIENCE 2016; 7:1177. [PMID: 27551287 PMCID: PMC4976107 DOI: 10.3389/fpls.2016.01177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/21/2016] [Indexed: 05/07/2023]
Abstract
In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes's response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery.
Collapse
Affiliation(s)
- Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Zhiqin Liu
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
| | - Jiazhi Li
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Yanshen Chen
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Deyi Guan
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
| | - Shuilin He
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
- *Correspondence: Shuilin He,
| |
Collapse
|
4
|
Lim HS, Nam J, Seo EY, Nam M, Vaira AM, Bae H, Jang CY, Lee CH, Kim HG, Roh M, Hammond J. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein. Virology 2014; 452-453:264-78. [PMID: 24606704 DOI: 10.1016/j.virol.2014.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/01/2013] [Accepted: 01/25/2014] [Indexed: 11/15/2022]
Abstract
Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CPSP) with that from AltMV-Po (CP(Po)) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP(Po) [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CPSP but not CP(Po) interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CPSP than CP(Po) in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Jiryun Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Eun-Young Seo
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Moon Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Anna Maria Vaira
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA; Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135, Italy.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Geongsan 712-749, Republic of Korea.
| | - Chan-Yong Jang
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Cheol Ho Lee
- Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704, Republic of Korea.
| | - Hong Gi Kim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Mark Roh
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA; Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714, Republic of Korea.
| | - John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA.
| |
Collapse
|