1
|
Jia M, Liu Z, Wei J, Li Q, Hou Z, Sun L, Yu H, Yu J, Lu S. Rhizobacterial diversity, community composition, and the influence of keystone taxa on O'Neal blueberry ( Vaccinium corymbosum). Front Microbiol 2024; 15:1460067. [PMID: 39345258 PMCID: PMC11427291 DOI: 10.3389/fmicb.2024.1460067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Rhizosphere microbiotas play vital roles in resisting environmental stress, transforming soil nutrients, and promoting plant health, growth, and productivity. The effects of rhizosphere microbial community shaping and the characteristics and functions of keystone taxa on blueberries were comprehensively studied by examining the rhizobacteria of healthy old trees (O), young seedlings (OG), and poorly growing seedlings (OB) of O'Neal blueberries. Our results showed that rhizobacterial diversity followed the order OB > > OG > O, and the microbial community of OG was similar to that of O, while that of OB was distinctly different. The predominant rhizobacteria identified included Actinobacteria, Proteobacteria, Firmicutes, Chloroflexi, and Acidobacteria. Firmicutes were highly enriched in healthy blueberries, with Bacillus identified as a key genus that significantly enhanced blueberry growth when inoculated. Bradyrhizobium and Gaiellales were common core bacteria in the blueberry rhizosphere. In contrast, Acidobacteria were the predominant phylum in poorly growing OB, with the specific Vicinamibacterales-related and Latescibacterota-related genera acting as keystone taxa that shaped the microbial community. In addition, bacterial species in Vicinamibacterales might act as a potential pathogen predicted by BugBase. Taken together, these findings provide fundamental insights into the development of the blueberry rhizosphere microbial community and highlight the role of beneficial rhizobacteria, such as Bacillus, in enhancing blueberry growth. This knowledge could contribute to the exploitation of beneficial rhizobacteria and the prevention of pathogens in modern agriculture.
Collapse
Affiliation(s)
- Mingyun Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Zhuangzhuang Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Jiguang Wei
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Qi Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Zhaoqi Hou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Ling Sun
- College of Resources and Environmental Sciences, Nanjing Forestry University, Nanjing, China
| | - Hong Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Jinping Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Shipeng Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| |
Collapse
|
2
|
Su L, Zhang J, Fan J, Li D, Zhao M, Wang Y, Pan H, Zhao L, Zhang X. Antagonistic Mechanism Analysis of Bacillus velezensis JLU-1, a Biocontrol Agent of Rice Pathogen Magnaporthe oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19657-19666. [PMID: 39190007 DOI: 10.1021/acs.jafc.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Magnaporthe oryzae, the causal agent of rice blast, is a fungal disease pathogen. Bacillus spp. have emerged as the most promising biological control agent alternative to chemical fungicides. In this study, the bacterial strain JLU-1 with significant antagonistic activity isolated from the rhizosphere soil of rice was identified as Bacillus velezensis through whole-genome sequencing, average nucleotide identity analysis, and 16S rRNA gene sequencing. Twelve gene clusters for secondary metabolite synthesis were identified in JLU-1. Furthermore, 3 secondary metabolites were identified in JLU-1, and the antagonistic effect of secondary metabolites against fungal pathogens was confirmed. Exposure to JLU-1 reduced the virulence of M. oryzae, and JLU-1 has the ability to induce the reactive oxygen species production of rice and improve the salt tolerance of rice. All of these results indicated that JLU-1 and its secondary metabolites have the promising potential to be developed into a biocontrol agent to control fungal diseases.
Collapse
Affiliation(s)
- Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiyue Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinyu Fan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dan Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yichi Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Feng L, Li Q, Zhou D, Jia M, Liu Z, Hou Z, Ren Q, Ji S, Sang S, Lu S, Yu J. B. subtilis CNBG-PGPR-1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:193-211. [PMID: 37812678 DOI: 10.1111/tpj.16489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Soil salinity severely threatens plant growth and crop yields. The utilization of PGPR is an effective strategy for enhancing plant salt tolerance, but the mechanisms involved in this process have rarely been reported. In this study, we investigated the effects of Bacillus subtilis CNBG-PGPR-1 on improving plant salt tolerance and elucidated the molecular pathways involved. The results showed that CNBG-PGPR-1 significantly improved the cellular homeostasis and photosynthetic efficiency of leaves and reduced ion toxicity and osmotic stress caused by salt in tomato. Transcriptome analysis uncovered that CNBG-PGPR-1 enhanced plant salt tolerance through the activation of complex molecular pathways, with plant hormone signal transduction playing an important role. Comparative analysis and pharmacological experiments confirmed that the ethylene pathway was closely related to the beneficial effect of CNBG-PGPR-1 on improving plant salt tolerance. Furthermore, we found that methionine, a precursor of ethylene synthesis, significantly accumulated in response to CNBG-PGPR-1 in tomato. Exogenous L-methionine largely mimicked the beneficial effects of CNBG-PGPR-1 and activated the expression of ethylene pathway-related genes, indicating CNBG-PGPR-1 induces methionine accumulation to regulate the ethylene pathway in tomato. Finally, CNBG-PGPR-1 reduced salt-induced ROS by activating ROS scavenger-encoding genes, mainly involved in GSH metabolism and POD-related genes, which were also closely linked to methionine metabolism. Overall, our studies demonstrate that CNBG-PGPR-1-induced methionine is a key regulator in enhancing plant salt tolerance through the ethylene pathway and ROS scavenging, providing a novel understanding of the mechanism by which beneficial microbes improve plant salt tolerance.
Collapse
Affiliation(s)
- Liuchun Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Dongqin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Mingyun Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhuangzhuang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhaoqi Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Quanjin Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Shengdong Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shipeng Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| |
Collapse
|