1
|
Yin Y, Luo LZ, Li LL, Hu Z, Chen YC, Ma JC, Yu YH, Wang HH, Zhang WB. A Nonessential Sfp-Type Phosphopantetheinyl Transferase Contributes Significantly to the Pathogenicity of Ralstonia solanacearum. PHYTOPATHOLOGY 2024; 114:2364-2374. [PMID: 39571049 DOI: 10.1094/phyto-04-24-0113-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
4'-Phosphopantetheinyl transferases (PPTases) play important roles in the posttranslational modifications of bacterial carrier proteins, which are involved in various metabolic pathways. Here, we found that RsacpS and RspcpS encoded a functional AcpS-type and Sfp-type PPTase, respectively, in Ralstonia solanacearum GMI1000, and both are capable of modifying R. solanacearum AcpP1, AcpP2, AcpP3, and AcpP5 proteins. RspcpS is located on the megaplasmid, which does not affect strain growth and fatty acid synthesis but significantly contributes to the virulence of R. solanacearum and preferentially participates in secondary metabolism. We found that deletion of RspcpS did not affect the abilities of cellulose degradation, biofilm formation, and resistance to NaCl, sodium dodecyl sulfate, and H2O2 and attenuated R. solanacearum pathogenicity only in the assay of soil-drenching infection but not stem injection of tomato. It is hypothesized that RsPcpS plays a role in cell viability in complex environments and in the process during which the strain recognizes and approaches plants. These results suggest that both RsAcpS and RsPcpS may be potential targets for controlling diseases caused by R. solanacearum.
Collapse
Affiliation(s)
- Yu Yin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Li-Zhen Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin-Lin Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Cai Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
2
|
Wang J, Ping Y, Liu W, He X, Du C. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and comA genes. Prep Biochem Biotechnol 2024; 54:184-192. [PMID: 37158496 DOI: 10.1080/10826068.2023.2209890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacillus subtilis HNDF2-3 can produce a variety of lipopeptide antibiotics with lower production. To improve its lipopeptide production, three genetically engineered strains were constructed. The results of real-time PCR showed that the highest transcriptional levels of the sfp gene in F2-3sfp, F2-3comA and F2-3sfp-comA were 29.01, 6.65 and 17.50 times of the original strain, respectively, while the highest transcriptional levels of the comA gene in F2-3comA and F2-3sfp-comA were 10.44 and 4.13 times of the original strain, respectively. The results of ELISA showed that the malonyl-CoA transacylase activity of F2-3comA was the highest, reaching 18.53 IU/L at 24 h, the data was 32.74% higher than that of the original strain. The highest total lipopeptide production of F2-3sfp, F2-3comA and F2-3sfp-comA induced by IPTG at optimal concentration were 33.51, 46.05 and 38.96% higher than that of the original strain, respectively. The results of HPLC showed that iturin A production of F2-3sfp-comA was the highest, which was 63.16% higher than that of the original strain. This study laid the foundation for further construction of genetically engineered strains with high lipopeptide production.
Collapse
Affiliation(s)
- Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
3
|
Li X, Yan Y, Xie S, Li Z, Xia H. Enhancement of milbemycins production by phosphopantetheinyl transferase and regulatory pathway engineering in Streptomyces bingchenggensis. World J Microbiol Biotechnol 2023; 39:278. [PMID: 37582899 DOI: 10.1007/s11274-023-03727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Milbemycins (MILs), a group of 16-membered insecticidal macrocylic lactones, are widely used as the biological pesticide and the precursors of semi-synthetic veterinary drugs. Polyketide synthases (PKSs), which require phosphopantetheinyl transferases (PPTases) to activate their ACP domains from apo forms to holo forms, catalyze the backbone biosynthesis of MILs. Here we found there was a complex phosphopantetheinylation network mediated by five putative PPTases in Streptomyces bingchenggensis. Repression mutants of PpA27 and PpA62 via CRISPRi both produced significantly lower yields of MILs than that of the control strain. Repression mutant of PpA68 led to abolishment of the pigment production. MILs production was significantly enhanced by PpA27 overexpression, while not by the overexpression of other PPTases. PpA27 was thus proved a dedicated post-translational enzyme to activate PKSs involved in the MILs biosynthesis. MILs titer was further enhanced by co-overexpression of PpA27 and MilR, the pathway‑specific transcriptional activator of MIL biosynthetic gene cluster. When PpA27 and MilR were co-overexpressed in the industrial S. bingchenggensis HMB, MILs production was increased by 40.5%. These results indicated that tuning the antibiotic biosynthetic pathway by co-engineering transcriptional regulation network and post-translational phosphopantetheinylation network is an effective strategy for antibiotic production improvement.
Collapse
Affiliation(s)
- Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Yusi Yan
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Shijie Xie
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.
| |
Collapse
|
4
|
Deng MR, Chik SY, Li Y, Zhu H. An in-cluster Sfp-type phosphopantetheinyl transferase instead of the holo-ACP synthase activates the granaticin biosynthesis under natural physiological conditions. Front Chem 2022; 10:1112362. [PMID: 36618868 PMCID: PMC9813960 DOI: 10.3389/fchem.2022.1112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial aromatic polyketides are mainly biosynthesized by type II polyketide synthases (PKSs). The PKSs cannot be functional unless their acyl carrier proteins (ACPs) are phosphopantetheinylated by phosphopantetheinyl transferases (PPTases). Gra-ORF32 was identified as an in-cluster PPTase dedicated for granaticin biosynthesis in Streptomyces vietnamensis and the Arg- and Pro-rich N terminus was found to be crucial for catalytic activity. Overexpression of the encoding genes of the holo-ACP synthases of fatty acid synthases (FAS ACPSs) of both E. coli and S. vietnamensis could efficiently activate the production of granaticins in the Δgra-orf32 mutant, suggesting the ACP of granaticin (graACP) is an efficient substrate for FAS ACPSs. However, Gra-ORF32, the cognate PPTase of the graACP, could not compensate the conditional deficiency of ACPS in E. coli HT253, indicating that it has evolved to be functionally segregated from fatty acid biosynthesis. Nine out of eleven endogenous and all the tested exogenous non-cognate PPTases could activate the production of granaticins to varied extents when overexpressed in the Δgra-orf32 mutant, indicating that ACPs of type II PKSs could also be widely recognized as effective substrates by the Sfp-type PPTases. The exogenous PPTases of type II PKSs activated the production of granaticins with much higher efficiency, suggesting that the phylogenetically distant in-cluster PPTases of type II PKSs could share substrate preferences for the ACPs of type II PKSs. A significantly elevated production of granaticins was observed when the mutant Δgra-orf32 was cultivated on ISP2 plates, which was a consequence of crosstalk between the granaticin pathway and a kinamycin-like pathway as revealed by transcriptome analysis and pathway inactivations. Although the host FAS ACPS could efficiently activate the production of granaticins when overexpressed, only Gra-ORF32 activated the efficient production of granaticins under natural physiological conditions, indicating that the activity of the host FAS ACPS was strictly regulated, possibly by binding the FAS holo-ACP product with high affinity. Our findings would contribute to a more comprehensive understanding of how the ACPs of type II PKSs are activated and facilitate the future functional reconstitutions of type II PKSs in E. coli.
Collapse
Affiliation(s)
- Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Yin Y, Li R, Liang WT, Zhang WB, Hu Z, Ma JC, Wang HH. Of its five acyl carrier proteins, only AcpP1 functions in Ralstonia solanacearum fatty acid synthesis. Front Microbiol 2022; 13:1014971. [PMID: 36212838 PMCID: PMC9542644 DOI: 10.3389/fmicb.2022.1014971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The fatty acid synthesis (FAS) pathway is essential for bacterial survival. Acyl carrier proteins (ACPs), donors of acyl moieties, play a central role in FAS and are considered potential targets for the development of antibacterial agents. Ralstonia solanacearum, a primary phytopathogenic bacterium, causes bacterial wilt in more than 200 plant species. The genome of R. solanacearum contains five annotated acp genes, acpP1, acpP2, acpP3, acpP4, and acpP5. In this study, we characterized the five putative ACPs and confirmed that only AcpP1 is involved in FAS and is necessary for the growth of R. solanacearum. We also found that AcpP2 and AcpP4 participate in the polyketide synthesis pathway. Unexpectedly, the disruption of four acp genes (acpP2, acpP3, acpP4, and acpP5) allowed the mutant strain to grow as well as the wild-type strain, but attenuated the bacterium’s pathogenicity in the host plant tomato, suggesting that these four ACPs contribute to the virulence of R. solanacearum through mechanisms other than the FAS pathway.
Collapse
|