1
|
Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. Breeding toward improved ecological plant-microbiome interactions. TRENDS IN PLANT SCIENCE 2022; 27:1134-1143. [PMID: 35803843 DOI: 10.1016/j.tplants.2022.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Domestication processes, amplified by breeding programs, have allowed the selection of more productive genotypes and more suitable crop lines capable of coping with the changing climate. Notwithstanding these advancements, the impact of plant breeding on the ecology of plant-microbiome interactions has not been adequately considered yet. This includes the possible exploitation of beneficial plant-microbe interactions to develop crops with improved performance and better adaptability to any environmental scenario. Here we discuss the exploitation of customized synthetic microbial communities in agricultural systems to develop more sustainable breeding strategies based on the implementation of multiple interactions between plants and their beneficial associated microorganisms.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| | - Marco Sandrini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Loredana Moffa
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
| | - Raffaella Balestrini
- National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy.
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| |
Collapse
|
2
|
Denison RF, Muller KE. An evolutionary perspective on increasing net benefits to crops from symbiotic microbes. Evol Appl 2022; 15:1490-1504. [PMID: 36330301 PMCID: PMC9624085 DOI: 10.1111/eva.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-imposed, fitness-reducing sanctions against less-beneficial symbionts have been documented for rhizobia, mycorrhizal fungi, and fig wasps. Although most of our examples are for rhizobia, we argue that the evolutionary persistence of mutualism in any symbiosis would require such sanctions, if there are multiple symbiont genotypes per host plant. We therefore discuss methods that could be used to develop and assess crops with stricter sanctions. These include methods to screen strains for greater mutualism as resources to identify crop genotypes that impose stronger selection for mutualism. Single-strain experiments that measure costs as well as benefits have shown that diversion of resources by rhizobia can reduce nitrogen-fixation efficiency (N per C) and that some legumes can increase this efficiency by manipulating their symbionts. Plants in the field always host multiple strains with possible synergistic interactions, so benefits from different strains might best be compared by regressing plant growth or yield on each strain's abundance in a mixture. However, results from this approach have not yet been published. To measure legacy effects of stronger sanctions on future crops, single-genotype test crops could be planted in a field that recently had replicated plots with different genotypes of the sanction-imposing crop. Enhancing agricultural benefits from symbiosis may require accepting tradeoffs that constrained past natural selection, including tradeoffs between current and future benefits.
Collapse
Affiliation(s)
- R. Ford Denison
- Ecology, Evolution, & BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | | |
Collapse
|
3
|
Hashem I, Van Impe JFM. A Game Theoretic Analysis of the Dual Function of Antibiotics. Front Microbiol 2022; 12:812788. [PMID: 35250912 PMCID: PMC8889009 DOI: 10.3389/fmicb.2021.812788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
There are two major views toward the role of antibiotics in microbial social interactions. The classical view is that antibiotics serve as weapons, produced by a bacterial species, at a significant cost, to inhibit the growth of its competitors. This view is supported by observations that antibiotics are usually upregulated by stress responses that infer the intensity of ecological competition, such as nutrient limitation and cellular damage, which point out to a competitive role for antibiotics. The other ecological function frequently assigned to antibiotics is that they serve as signaling molecules which regulate the collective behavior of a microbial community. Here, we investigate the conditions at which a weapon can serve as a signal in the context of microbial competition. We propose that an antibiotic will serve as a signal whenever a potential alteration of the growth behavior of the signal receiver, in response to a subinhibitory concentration (SIC) of the antibiotic, reduces the competitive pressure on the signal producer. This in turn would lead to avoiding triggering the stress mechanisms of the signal producer responsible for further antibiotics production. We show using individual-based modeling that this reduction of competitive pressure on the signal producer can happen through two main classes of responses by the signal recipient: competition tolerance, where the recipient reduces its competitive impact on the signal producer by switching to a low growth rate/ high yield strategy, and niche segregation, where the recipient reduces the competitive pressure on the signal producer by reducing their niche overlap. Our hypothesis proposes that antibiotics serve as signals out of their original function as weapons in order to reduce the chances of engaging in fights that would be costly to both the antibiotic producer as well as to its competitors.
Collapse
Affiliation(s)
- Ihab Hashem
- Department of Chemical Engineering, BioTeC+ & OPTEC, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- Department of Chemical Engineering, BioTeC+ & OPTEC, KU Leuven, Ghent, Belgium
| |
Collapse
|
4
|
Vesty EF, Whitbread AL, Needs S, Tanko W, Jones K, Halliday N, Ghaderiardakani F, Liu X, Cámara M, Coates JC. Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens. Sci Rep 2020; 10:2614. [PMID: 32054953 PMCID: PMC7018845 DOI: 10.1038/s41598-020-59467-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023] Open
Abstract
Plants live in close association with microorganisms that can have beneficial or detrimental effects. The activity of bacteria in association with flowering plants has been extensively analysed. Bacteria use quorum-sensing as a way of monitoring their population density and interacting with their environment. A key group of quorum sensing molecules in Gram-negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the growth and development of both flowering plants, including crops, and marine algae. Thus, AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated bacterial-plant/algal interactions is unknown. In this paper, we show that AHLs can affect spore germination in a representative of the earliest plants on land, the Bryophyte moss Physcomitrella patens. Furthermore, we demonstrate that sporophytes of some wild isolates of Physcomitrella patens are associated with AHL-producing bacteria.
Collapse
Affiliation(s)
- Eleanor F Vesty
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,University Centre Shrewsbury, Guildhall, Frankwell Quay, Shrewsbury, Shropshire, UK
| | - Amy L Whitbread
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Sarah Needs
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Life, Health and Chemical Sciences, Open University, Walton Hall, Kents Hill, Milton Keynes, UK
| | - Wesal Tanko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kirsty Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nigel Halliday
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Xiaoguang Liu
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Miguel Cámara
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
6
|
Lajoie G, Kembel SW. Making the Most of Trait-Based Approaches for Microbial Ecology. Trends Microbiol 2019; 27:814-823. [PMID: 31296406 DOI: 10.1016/j.tim.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
There is an increasing interest in applying trait-based approaches to microbial ecology, but the question of how and why to do it is still lagging behind. By anchoring our discussion of these questions in a framework derived from epistemology, we broaden the scope of trait-based approaches to microbial ecology from one oriented mostly around explanation towards one inclusive of the predictive and integrative potential of these approaches. We use case studies from macro-organismal ecology to concretely show how these goals for knowledge development can be fulfilled and propose clear directions, adapted to the biological reality of microbes, to make the most of recent advancements in the measurement of microbial phenotypes and traits.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Canada, H2X 1Y4.
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Canada, H2X 1Y4
| |
Collapse
|